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“Traditional” approach: Components of photon production

“Direct” component —
Fixed-order calculations

@ ~+jet available at NLO (JetPhox)
Phys. Rev. D73 (2006), 094007

@ ~v available at NLO (DiPhox)
Eur. Phys. J. C16 (2000), 311330

@ NLO for yy+jet

JHEP 04 (2003), 059

9 Loop-induced gg — vyyg
Phys. Lett. B460 (1999), 184188

“Non-prompt” component: Photons from 7w

@ Not considered in such calculations

0

“Fragmentation” component —
Photon fragmentation function

@ Photon-quark collinear singularities
factorised off ME

@ Resummed to all orders in ag
= Photon fragmentation function
D7 4(z,Q?) phys. Lett. B79 (1978), 83

(9

Attached to parton production ME

(9

Relevant even if isolation criteria applied
to photons (— later)

a0 F/ Ran it 0 CRETE

@ Sometimes & corrected for in experimental measurements

)
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Alternative approach: Ordinary parton-shower Monte Carlo

“Direct” component —
Tree-level calculation + QCD parton shower

@ Built-in or automatically generated
tree-level ME
e.g. pp — ~y+parton

@ QCD parton shower resums
logarithmically enhanced QCD
corrections

“Non-prompt” component: Photons from 7

0

@ Can be fully considered in this approach

“Fragmentation” component —
Interleaved QCD-+QED shower

9 Tree-level ME for parton production

@ Parton shower with interleaved QCD
and QED emissions
= Models D] ,(z, Q?)

@ Problem: Very inefficient

a0 F/ Ramahe 0 CRETE

@ Sources: hadronisation, hadron decays, underlying event

N
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How does a PS MC work?

Monte-Carlo event generation

PERTURBATIVE PHYSICS
o Initial state parton shower(*)
@ Signal process™*
@ Final state parton shower*
@ Underlying event
SOFT PHYSICS
@ Hadronisation

9@ Hadron decays

*PROMPT PHOTON PRODUCTION:
@ LO matrix elements
= “direct” component

9 Interleaved parton shower for
QCD@®QED evolution
= Models D] ;(z, Q2)

ME+PS Monte Carlo
0000000000000

Conclusions
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Connecting hard and hadronisation scale

Collinear factorisation of QCD radiation

@ Singularities from collinear emissions factorised off at a given scale

= Parton distribution functions (PDF) in initial state

) non-perturbative objects
= Fragmentation functions (FF) in final state } perturba )

Evolution equations

o Evolution of PDF/FF between different scales calculable perturbatively (DGLAP):

@ dt [t dzas
faw @)~ fale, @)= [T [ F5 Y Pun G
0 x

z 27
b=q,g

= Difference between scales given by parton splittings

@ Differential version of that equation in pictures for FF Dg:

D (@/2,Q%) DZ(I/Z;Qz) h

Dh(z,Q%) h o ! .
+ =
d log( Q dlog(Q%/u?) 4 QWqu(z) 2T By (2)

Conclusions
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Parton-shower algorithm
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Unfolding the factorised emissions: Recursion
Q Start with parton produced at scale Qg

Q Dice scale Q? (and flavour) for next splitting according to the evolution equations

Q IfQ? > Qhadmmsamn 1GeV?: Start at 1 again for the splitting products

Solving the evolution equation for step 2

@ Use Sudakov-formalism to solve it (+ some tricks)
= Probability for no emission between two scales (“Sudakov form factor”)

Q2
Aa(@3.Q%) = exp / L[4 2 Kt

b= q,g

o Example: Kernel KCqp(2,t) = 52 Pup(2)

CSSHOWERA+ in SHERPA — Parton shower based on dipole subtraction
9@ Emissions ordered in t = kﬁ_

@ Based on Catani-Seymour subtraction terms (colour-connected emitter-spectator dipoles)

PiPk

KQCD(Z K2 ) = as(ki) z) Z<VQCD K2 )
+ K (pi + ;)P

S8 o GSPL (7, 2) with 2 =

~
o
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Modifications of shower for interleaved QCD@®QED evolution

Modifications for QED
@ Want to interleave QCD@®QED emissions in factorised form
Aq(@3,Q%) = AP (@3, @) ALY (@3, Q%)

@ Implemented by adding splitting functions for gq-y vertex

Z Kab zZ, t Z ICab(z t

b=gq,g b=q,9,7

(%

Difference to large No QCD: Not exactly one colour partner for dipole

(9

Neglects (negative) interference from legs with same-sign charges

(9

Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)
Does this actually describe DJ 4(z, Q?)? Let's look at some data ...

<
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Fragmentation function at LEP
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ALEPH: Z. Phys. C69 (1996), 365378
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Fragmentation function at LEP

Photon Fragmentation in 3-jet events with yeut = 0.01
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ALEPH: Z. Phys. C69 (1996), 365378
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Relevance of fragmentation component

Conclusions

D@ : Phys. Lett. B639 (2006), 151158

p. spectrum for leading photon

= Hard isolated photons

s B — ] ‘ .

@ e Do data Inclusive photon p | at Tevatron
2 oA 0 23 GeV < p] < 300 GeV
= — =

3 jii—=i o E(R=04)/E, <11

o ji—=r

o1

N

ja=]

iy

Contributions from subprocesses

Total single photon production

® jj — j Dijets
@ jj — ~j Photon + jet
M

= Fragmentation component in dijets
plays important role!

11/25
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Correcting the shower with higher-order matrix elements — motivation

+
+
+

Two approaches to real higher-order corrections

Matrix Elements

L

Exact to fixed order
Include all interferences
N¢ = 3 (summed or sampled)

Perturbation breaks down due to
large logarithms

Only low FS multiplicity

Parton Showers

+ Resum logarithmically enhanced contributions

+

to all orders

Produce high-multiplicity final state
Only approximation for splitting ME
Large N¢ limit only

!

Goal: Combine advantages

9 Describe particular final state by ME (hard radiation)

9 Don't spoil the inclusive picture provided by the PS (intrajet evolution)

Conclusions
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Conclusions

ME+PS merging JHEP 0905 (2009) 053 [arXiv:0903.1219 [hep-ph]]

Main idea of ME+PS merging
Phase space slicing for extra QCD radiation:
@ Hard emissions from matrix element

@ Soft/collinear emissions from parton shower

More formally

Effectively different splitting kernels KC for hard vs. soft/collinear radiation

KEy(2:t) = Kab(z,1) © [Qout — Qas(2,8)]  and KNP(2,8) = Kan(z,1) © [Qus(2,) — Qout

@ Boundary determined by value of Qcut

9 Qcut regularises real emission MEs (like a jet resolution)

Evolution factorises (again! this time in phase space)

Aa(ng QQ) = AaPS(ng Q2) AgIE(ng Q2)

= Independent evolution in both regimes
= How to replace the AME(Q3, Q?) part with MEs now?

13 /2
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Merging algorithm

Outline of algorithm

Q Choose matrix-element multiplicity N according to oy, Op+1, Ont2, ...
and generate ME event according to do

Q Translate ME event into shower language: Branching history

14 /25
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Merging algorithm: Branching history

Translate ME event into shower language

Example:
Why? /
@ Need individual starting scales for PS evolution at each leg
@ Simply using the factorisation scale is wrong

9 Problem: ME only gives final state, no history
Solution: Backward-clustering (running the shower reversed)
Q Take N-particle final state

Q Select last splitting according to shower probablities ~

Q Recombine partons using inverted shower kinematics -
— N-1 particles + splitting variables for one node

Q Reweight a.(u?) — as(p?)

Q Repeat 2 - 4 until core process

Most probable branching history a la shower.
Now let's use it ...

Conclusions
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Merging algorithm

Outline of algorithm
Q Choose matrix-element multiplicity N according to oy, Op+1, Ont2, ...
and generate ME event according to do
Q Translate ME event into shower language: Branching history

Q Start truncated shower evolution on each leg

@ If emission in PS regime = Keep
This is the APS(¢,¢') part.

@ Emission in ME regime?
This is the AME (¢, ¢/) part.

16 /25
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Merging algorithm: Emissions in ME regime

How to deal with the AME(¢,¢) part?
9 Relates to shower emissions above Qcut

Has to be allowed in shower evolution, but:

What if something is emitted? — ckkw-L
ME PS

Emissions in this regime
should be described by MEs!
= Reject event to avoid
double counting

S~

—
-~

5SS
2

Consequences

@ Reduction of cross section o — o - AME(¢, /)

¢ Compensated by higher order ME's

= Leading order cross section stable

17 /25
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Merging algorithm

Outline of algorithm

Q Choose matrix-element multiplicity N according to oy, Op+1, Ont2, ...

and generate ME event according to do
Q Translate ME event into shower language: Branching history

Q Start truncated shower evolution on each leg

@ If emission in PS regime = Keep
This is the APS(¢,¢') part.

@ Emission in ME regime? =- Reject event
This is the AME (¢, ¢/) part.

3

Evolution in PS regime preserved
Emissions above Qcut ME-corrected

Conclusions

o

N
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Photons in Merging

QCD®QED

Algorithm works with the same concept!
@ Add QED radiation matrix elements
@ Add QED radiation in shower

@ Rest stays the same, including rejection

Completely democratic treatment of photons and partons

Separation criterion
@ In principle, Qcut or even the form of Q;;, can be chosen separately for QCD and QED

@ Might be useful for analyses requiring isolated photons
= Photons in analysis region dominantly produced by matrix-element
9 E.g. isolation in cone with radius D and minimal p | for photons

. AnZ +Ag2. . .
= could use ij = mm(pi i,pi ].)n”Diz(p” (like kK, jet algorithm)

&
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= Improved approach: ME+PS Monte Carlo

“Direct” component — “Fragmentation” component —
Tree-level calculation + QCD parton shower ME+PS

9 Built-in or automatically generated
tree-level ME
e.g. pp — y+parton 9@ Well separated photons come from

higher-order MEs
@ QCD parton shower resums '8 r
logarithmically enhanced QCD @ Collinear photons from PS
corrections @ Advantage over pure shower:
@ Exact ME instead of PS approximation
for hard photons
@ Adjust separation criterion =
PS-fragmentation component negligible
but still available e.g. for checks!

“Non-prompt” component: Photons from 7¥

= G B = P oo
@ Can be fully considered in this approach

@ Sources: hadronisation, hadron decays, underlying event

o
S
N
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Results for diphoton production at Tevatron D®: arXiv.org:1002.4917
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Results for diphoton production at Tevatron D®: arXiv.org:1002.4917
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Results for diphoton production at Tevatron D®: arXiv.org:1002.4917
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Results for diphoton production at Tevatron

do/d] cos0°| [pb]

(MC — data)

00000000

Polar scattering angle of the photons
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Conclusions

Conclusions
@ Monte-Carlo parton showers useful tool for photon production
@ Natural incorporation of QED splittings in parton shower
@ Supplementing PS with higher order tree level ME is advisable

9@ Democratic treatment of photons and partons
= ME+PS-Merging of QCD and QED emissions

@ Improved agreement with Tevatron measurements

Outlook
@ SHERPA 1.2.1 available in CMS software

@ Still trying to optimize event generation efficiency for photon production

@ Tutorial with run card examples available in the next week(s?)
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