Hard photon production in Sherpa Based on Phys. Rev. D 81, 034026 (2010)

Frank Siegert 1

Institute for Particle Physics Phenomenology, Durham University: Department of Physics & Astronomy, University College London

7 May 2010, CMS $H \rightarrow \gamma \gamma$ meeting

¹In collaboration with Stefan Höche & Steffen Schumann

Table of Contents

- Introduction
 - Traditional approach
- Ordinary parton-shower Monte Carlo
 - Basics
 - Photons in the parton shower
- ME+PS Monte Carlo
 - ME+PS merging formalism
 - Merging photon emissions
 - Results
- Conclusions

"Traditional" approach: Components of photon production

"Direct" component -Fixed-order calculations

- γ +jet available at NLO (JetPhox) Phys. Rev. D73 (2006), 094007
- $\gamma\gamma$ available at NLO (DiPhox) Eur. Phys. J. C16 (2000), 311330
- NLO for $\gamma\gamma$ +jet JHEP 04 (2003), 059
- Loop-induced $gg \rightarrow \gamma \gamma g$ Phys. Lett. B460 (1999), 184188

"Fragmentation" component -Photon fragmentation function

- Photon-quark collinear singularities factorised off MF
- Resummed to all orders in α_s ⇒ Photon fragmentation function $D_{q,q}^{\gamma}(z,Q^2)$ Phys. Lett. B79 (1978), 83
- Attached to parton production ME
- Relevant even if isolation criteria applied to photons $(\rightarrow later)$

"Non-prompt" component: Photons from $\pi^0 \to \gamma \gamma$, $\eta \to \gamma \gamma$, ...

- Not considered in such calculations
- Sometimes ≈ corrected for in experimental measurements

Alternative approach: Ordinary parton-shower Monte Carlo

"Direct" component –
Tree-level calculation + QCD parton shower

- Built-in or automatically generated tree-level ME e.g. $pp \rightarrow \gamma + parton$
- QCD parton shower resums logarithmically enhanced QCD corrections

"Fragmentation" component – Interleaved QCD+QED shower

- Tree-level ME for parton production
- Parton shower with interleaved QCD and QED emissions \Rightarrow Models $D_{q,q}^{\gamma}(z,Q^2)$
- Problem: Very inefficient

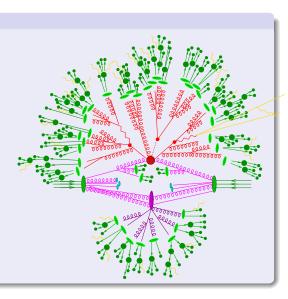
"Non-prompt" component: Photons from $\pi^0 \to \gamma \gamma$, $\eta \to \gamma \gamma$, ...

- Can be fully considered in this approach
- Sources: hadronisation, hadron decays, underlying event

How does a PS MC work?

Monte-Carlo event generation

PERTURBATIVE PHYSICS


- Initial state parton shower^(*)
- Signal process*
- Final state parton shower*
- Underlying event

Soft Physics

- Hadronisation
- Hadron decays

*Prompt photon production:

- I O matrix elements
 - ⇒ "direct" component
- Interleaved parton shower for QCD⊕QED evolution
 - \Rightarrow Models $D_{q,q}^{\gamma}(z,Q^2)$

Connecting hard and hadronisation scale

Collinear factorisation of QCD radiation

- Singularities from collinear emissions factorised off at a given scale
 - ⇒ Parton distribution functions (PDF) in initial state
 - ⇒ Fragmentation functions (FF) in final state

non-perturbative objects

Evolution equations

Evolution of PDF/FF between different scales calculable perturbatively (DGLAP):

$$f_a(x,Q^2) - f_a(x,Q_0^2) = \int_{Q_0^2}^{Q^2} \frac{dt}{t} \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} \sum_{b=q,g} \hat{P}_{ab}(z) f_b(\frac{x}{z},t)$$

- ⇒ Difference between scales given by parton splittings
- Differential version of that equation in pictures for FF D_a^h :

$$\frac{\mathrm{d}}{\mathrm{d} \log(Q^2/\mu^2)} \underbrace{\frac{D_q^h(x/Q^2)}{q}}^{h} = \frac{\alpha_s}{2\pi} \underbrace{\frac{Q^h(x/z,Q^2)}{\hat{p}_{qq}(z)}}_{q} + \underbrace{\frac{D_g^h(x/z,Q^2)}{2\pi} \underbrace{\hat{p}_{qg}(z)}_{pqg}}_{q} + \underbrace{\frac{D_g^h(x/z,Q^2)}{2\pi} \underbrace{\hat{p}_{qg}(x)}_{pqg}}_{q} + \underbrace{\frac{D_g^h(x/z,Q^2)}{2\pi} \underbrace{\hat{p}_{q$$

Parton-shower algorithm

Unfolding the factorised emissions: Recursion

- Start with parton produced at scale Q_0^2
- $oldsymbol{Q}$ Dice scale Q^2 (and flavour) for next splitting according to the evolution equations
- If $Q^2 > Q^2_{\rm hadronisation} \approx 1 {\rm GeV}^2$: Start at 1 again for the splitting products

Solving the evolution equation for step 2

- Use Sudakov-formalism to solve it (+ some tricks)
 - ⇒ Probability for no emission between two scales ("Sudakov form factor")

$$\Delta_a(Q_0^2, Q^2) = \exp\left\{-\int_{Q_0^2}^{Q^2} \frac{dt}{t} \int_{z_-}^{z_+} dz \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(z, t)\right\}$$

• Example: Kernel $\mathcal{K}_{ab}(z,t) = \frac{\alpha_s}{2\pi} P_{ab}(z)$

CSSHOWER++ in SHERPA - Parton shower based on dipole subtraction

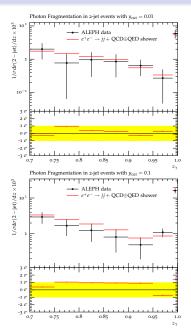
- ullet Emissions ordered in $t\equiv k_\perp^2$
- Based on Catani-Seymour subtraction terms (colour-connected emitter-spectator dipoles)

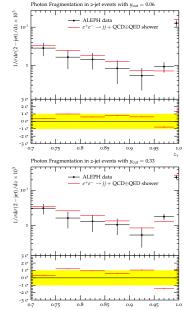
$$\mathcal{K}^{\rm QCD}_{(ij)i}(z,\mathbf{k}_{\perp}^2) \,=\, \frac{\alpha_s(\mathbf{k}_{\perp}^2)}{2\pi} \; J(\mathbf{k}_{\perp}^2,z) \, \sum_k \langle \mathbf{V}^{\rm QCD}_{(ij)i,k}(\mathbf{k}_{\perp}^2,z) \rangle \quad \text{with} \quad z \,=\, \frac{p_i p_k}{(p_i+p_j)p_k}$$

Modifications of shower for interleaved QCD⊕QED evolution

Modifications for QED

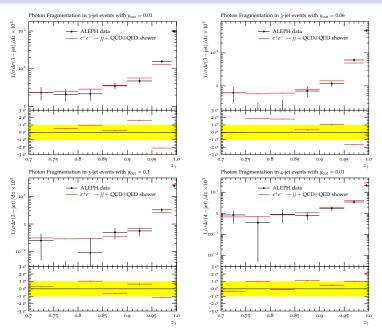
Want to interleave QCD⊕QED emissions in factorised form

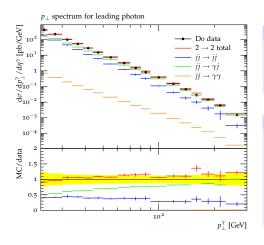

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{(\mathbf{QCD})}(Q_0^2, Q^2)\Delta_a^{(\mathbf{QED})}(Q_0^2, Q^2)$$


ullet Implemented by adding splitting functions for $qq\gamma$ vertex

$$\sum_{b=q,g} \mathcal{K}_{ab}(z,t) \to \sum_{b=q,g,\gamma} \mathcal{K}_{ab}(z,t)$$

- ullet Difference to large N_C QCD: Not exactly one colour partner for dipole
- Neglects (negative) interference from legs with same-sign charges
- Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)
- ullet Does this actually describe $D_{q,q}^{\gamma}(z,Q^2)$? Let's look at some data ...


ALEPH: Z. Phys. C69 (1996), 365378



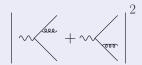
ALEPH: Z. Phys. C69 (1996), 365378

Fragmentation function at LEP

Inclusive photon p_{\perp} at Tevatron

- 23 GeV $< p_{\perp}^{\gamma} < 300 \text{ GeV}$
- $E(\mathcal{R} = 0.4)/E_{\gamma} < 1.1$
- ⇒ Hard isolated photons

Contributions from subprocesses


Total single photon production

- $jj \rightarrow jj$ Dijets
- $jj \rightarrow \gamma j$ Photon + jet
- $jj \rightarrow \gamma \gamma$ Diphotons
- \Rightarrow Fragmentation component in dijets plays important role!

Correcting the shower with higher-order matrix elements - motivation

Two approaches to real higher-order corrections

Matrix Elements

- + Exact to fixed order
- + Include all interferences
- + $N_C = 3$ (summed or sampled)
- Perturbation breaks down due to large logarithms
- Only low FS multiplicity

Parton Showers

- + Resum logarithmically enhanced contributions to all orders
- + Produce high-multiplicity final state
- Only approximation for splitting ME
- Large N_C limit only

Goal: Combine advantages

- Describe particular final state by ME (hard radiation)
- Don't spoil the inclusive picture provided by the PS (intrajet evolution)

JHEP 0905 (2009) 053 [arXiv:0903.1219 [hep-ph]]

Main idea of ME+PS merging

Phase space slicing for extra QCD radiation:

- Hard emissions from matrix element
- Soft/collinear emissions from parton shower

More formally

Effectively different splitting kernels K for hard vs. soft/collinear radiation

$$\mathcal{K}_{ab}^{\mathrm{PS}}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}_{ab}^{\mathrm{ME}}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- Boundary determined by value of Q_{cut}
- Q_{cut} regularises real emission MEs (like a jet resolution)

Evolution factorises (again! this time in phase space)

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{PS}(Q_0^2, Q^2) \Delta_a^{ME}(Q_0^2, Q^2)$$

- ⇒ Independent evolution in both regimes
- \Rightarrow How to replace the $\Delta_a^{\text{ME}}(Q_0^2, Q^2)$ part with MEs now?

ME+PS Monte Carlo

Outline of algorithm

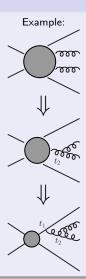
- **③** Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$
- **②** Translate ME event into shower language: **Branching history**

Merging algorithm: Branching history

Translate ME event into shower language

Why?

- Need individual starting scales for PS evolution at each leg
- Simply using the factorisation scale is wrong
- Problem: ME only gives final state, no history


Solution: Backward-clustering (running the shower reversed)

- Take N-particle final state
- Select last splitting according to shower probablities
- Recombine partons using inverted shower kinematics \rightarrow N-1 particles + splitting variables for one node
- Reweight $\alpha_s(\mu^2) \to \alpha_s(p_\perp^2)$
- Repeat 2 4 until core process

Most probable branching history a la shower.

Now let's use it ...

Merging algorithm

Outline of algorithm

- **Q** Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$
- Translate ME event into shower language: Branching history
- Start truncated shower evolution on each leg
 - If emission in PS regime \Rightarrow Keep This is the $\Delta_a^{\mathrm{PS}}(t,t')$ part.
 - Emission in ME regime? This is the $\Delta_a^{\mathrm{ME}}(t,t')$ part.

How to deal with the $\Delta_a^{\mathrm{ME}}(t,t')$ part?

Relates to shower emissions above Q_{cut}

Has to be allowed in shower evolution, but:

What if something is emitted? → CKKW-L

Emissions in this regime should be described by MEs!

⇒ Reject event to avoid double counting

Consequences

- Reduction of cross section $\sigma \to \sigma \cdot \Delta_a^{\mathrm{ME}}(t,t')$
- Compensated by higher order ME's

⇒ Leading order cross section stable

Merging algorithm

Outline of algorithm

- **①** Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$
- Translate ME event into shower language: Branching history
- Start truncated shower evolution on each leg
 - $\begin{tabular}{ll} \bullet & \mbox{If emission in PS regime} \Rightarrow {\bf Keep} \\ \mbox{This is the } \Delta_a^{\rm PS}(t,t') \mbox{ part.} \\ \end{tabular}$
 - Emission in ME regime? \Rightarrow Reject event This is the $\Delta_a^{\mathrm{ME}}(t,t')$ part.

Evolution in PS regime preserved Emissions above Q_{cut} ME-corrected

Photons in Merging

QCD⊕QED

Algorithm works with the same concept!

- Add QED radiation matrix elements
- Add QED radiation in shower
- Rest stays the same, including rejection

Completely democratic treatment of photons and partons

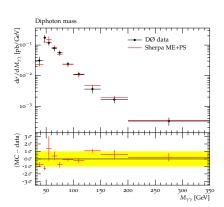
Separation criterion

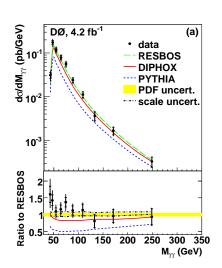
- ullet In principle, $Q_{
 m cut}$ or even the form of Q_{ij} , can be chosen separately for QCD and QED
- Might be useful for analyses requiring isolated photons
 - ⇒ Photons in analysis region dominantly produced by matrix-element
- ullet E.g. isolation in cone with radius D and minimal p_{\perp} for photons
 - \Rightarrow could use $Q_{ij}^2 = \min(p_{\perp i}^2, p_{\perp i}^2) \frac{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}{D^2}$ (like k_{\perp} jet algorithm)

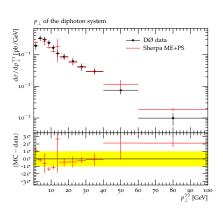
⇒ Improved approach: ME+PS Monte Carlo

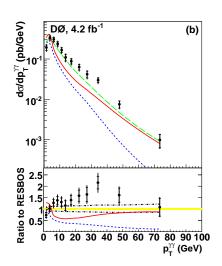
"Direct" component — Tree-level calculation + QCD parton shower

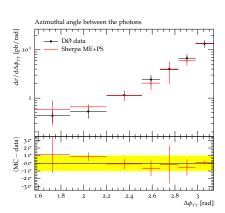
- Built-in or automatically generated tree-level ME
 e.g. pp → γ+parton
- QCD parton shower resums logarithmically enhanced QCD corrections

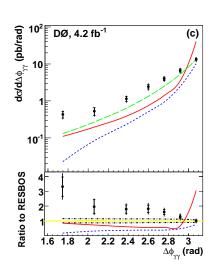

"**Fragmentation**" component – ME+PS

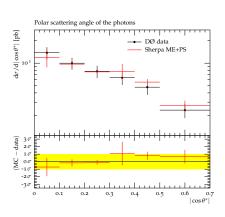


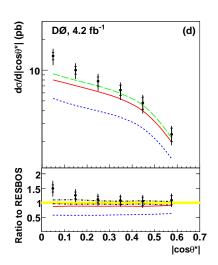

- Well separated photons come from higher-order MEs
- Collinear photons from PS
- Advantage over pure shower:
 - Exact ME instead of PS approximation for hard photons
 - Adjust separation criterion ⇒
 PS-fragmentation component negligible
 but still available e.g. for checks!


"Non-prompt" component: Photons from $\pi^0 \to \gamma \gamma$, $\eta \to \gamma \gamma$, ...


- Can be fully considered in this approach
- Sources: hadronisation, hadron decays, underlying event







Conclusions

Conclusions

- Monte-Carlo parton showers useful tool for photon production
- Natural incorporation of QED splittings in parton shower
- Supplementing PS with higher order tree level ME is advisable
- Democratic treatment of photons and partons ⇒ ME+PS-Merging of QCD and QED emissions
- Improved agreement with Tevatron measurements

Outlook

- SHERPA 1.2.1 available in CMS software
- Still trying to optimize event generation efficiency for photon production
- Tutorial with run card examples available in the next week(s?)