$\operatorname{SHERPA:}$ Overview and latest developments

Frank Siegert ¹

Institute for Particle Physics Phenomenology Durham University

LCG Generator Services meeting 25.06.2008

¹for Sherpa: J. Archibald, T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, FS, J. Winter

Introduction to the framework Version 1.1

- Initial state parton shower (QCD)
- Underlying event
- Signal process
- Final state parton shower (QCD)
- Fragmentation
- Hadron decays
- QED radiation

 SHERPA is the framework steering these event phases.

Introduction to the framework Version 1.1

Input files

```
Example run card Run.dat for Drell-Yan@LHC
(beam){
 BEAM_1 = 2212
 BEAM ENERGY 1 = 7000.
 BEAM_2 = 2212
 BEAM\_ENERGY_2 = 7000.
}(beam)
(processes) {
  Process : 93 93 -> 11 -11 93{1}
  Order electroweak : 2
  End process
}(processes)
(selector){
  JetFinder sqr(20/E_CMS) 1.
 Mass 11 -11 66 116
}(selector)
```

- Non-existent sections/parameters can be specified in files in fallback locations, or use default values
- Parameter-overwriting from the command line possible
- Tag replacing functionality

Running the generator: 3-step strategy

First run: Generating the ME libraries

```
$ Sherpa EVENTS=10000 0UTPUT=2
....
Single_Process::Tests for 2_2__d__db__e-__e+
Prepare gauge test and init helicity amplitudes. This may take some time.
In String_Handler::Complete : this may take some time....
Single_Process::CheckLibraries : Looking for a suitable library. This may take some time.
Library_Loader::LoadLibrary(): Failed to load library 'libProc_P2_2_2_6_14_16_5_0.so'.
Single_Process::WriteLibrary :
Library for 2_2__d_db__e-__e+ has been written, name is P2_2_2_6_14_16_5_0
....
Amegic::InitializeProcesses :
Some new libraries were created and have to be compiled and linked.
Troe '...makeLibra' in '/home/frank/sherpa/trunk/SHERPA/Run/LHC' and rerun.
```

Compiling the libraries

- Written out in C++
- Using autotools for compilation setup
- Simply type ./makelibs

Running the generator: 3-step strategy

Second run: Integration, event generation

```
$ Sherpa EVENTS=10000 OUTPUT=2
All_Processes::CalculateTotalXSec for 2_3__i__i_e-__e+__i
                                                                           Process integration
Starting the calculation. Lean back and enjoy ... .
523.701 \text{ pb} + - (16.9984 \text{ pb} = 3.24582 \%) 5000 (46.1 \%)
full optimization: ( 0 s elapsed / 45 s left / 45 s total )
508.574 pb +- ( 0.672573 pb = 0.132247 % ) 310000 ( 75.2 % )
2_3__i__i_e-__e+__i : 508.574 pb +/- 0.132247 %, exp. eff: 0.926893 %.
Store result : xs for 2_3__j__j_e-__e+__j : 508.574 pb +/- 0.132247%,
       max : 0.000140913
-- SHERPA generates events with the following structure --
                   : Signal Processes: Amegic
Perturbative
                                                                           Active modules
Perturbative
                   : Hard_Decays:
                   : Jet Evolution: Apacic
Perturbative
Perturbative
                   : Multiple Interactions:None
                   : Beam Remnants
Hadronization
Hadronization
                  : Hadronization: Ahadic
Hadronization
                   : Hadron Decays
                                                                           Event generation
 Event 600 ( 7 s elapsed / 114 s left / 121 s total )
```

Event record

Internal event structure

- Event (\approx HepMC::GenEvent) = list of linked Blobs (\approx HepMC::GenVertex)
- Four-momentum conservation locally fulfilled
- Particle status codes similar to HepMC

Example Blob for signal process

```
Blob [0] ( 1, Signal Process
                              , 2 -> 3 @ (0,0,0,0)
Incoming particles :
[G] 2 u
              1 (
                    4 ->
                            1) [( 5.3229e+01,-3.7077e-01,-5.2213e-01, 5.3225e+01), p^2=-3.6380e-12, m= 0.0000e+00] (615, 0)
[G] 2 G
                            1) [( 8.8449e+01, 2.3747e-01,-1.7765e-01,-8.8449e+01), p^2= 0.0000e+00, m= 0.0000e+00] (613,615)
              1 (
                    4 ->
Outgoing particles
                   1 ->
                            5) [( 5.1618e+01,-1.8670e+01,-4.8114e+01, 9.6923e-01), p^2= 0.0000e+00, m= 0.0000e+00] ( 0,
[H] 2 e-
              2 (
                                                                                                                         0)
[H] 2 e+
                            5) [( 5.5660e+01, 3.9427e+01, 2.0197e+01,-3.3698e+01), p^2= 4.5475e-13, m= 0.0000e+00] ( 0, 0)
              3 (
                   1 ->
[H] 2 u
              4 (
                   1 ->
                            5) [( 3.4400e+01,-2.0890e+01, 2.7217e+01,-2.4946e+00), p^2=-6.8212e-13, m= 0.0000e+00] (613, 0)
```

Other output formats

- HepEvt
- HepMC, if linked with the HepMC package

Introduction to the framework Version 1.1

$\mathrm{SHERPA} \ release \ 1.1$

- 1.1.0 released in April 2008, bugfix release 1.1.1 in May 2008
- Available on GENSER (thanks for the quick response!), in ATLAS and CMS

New features (~~ later)

- AHADIC++ Cluster fragmentation module
- Hadrons++ Complete hadron and au decay module
- $\operatorname{Photons}++$ QED radiation in the YFS formalism
- CKKW merging for processes with decay chains
- Expandability through dynamically linked user libraries

Important UI changes

- Particle ID's now conform with PDG
- New default parameters, see Changelog before using old setups!
- One sectioned input file ("run card") instead of separate files
- \Rightarrow Migration script for old setups provided

Introduction to the framework Version 1.1

Installation

What you need

- SHERPA tarball from http://sherpa-mc.de
- C++ compiler (g++), fortran compiler (g77+libg2c or gfortran)
- Autotools: automake, autoconf, libtool

Installation procedure

- tar xzf Sherpa-1.1.1.tar.gz
- cd SHERPA-MC-1.1.1
- TOOLS/makeinstall -c
- That's it. Should take 10-20 mins.

Linking to optional external packages

- HepMC library version 2.x: For output in HepMC event record TOOLS/makeinstall --copt --enable-hepmc2=/path/to/hepmc/
- LHAPDF: For using common interface to many PDF sets TOOLS/makeinstall --copt --enable-lhapdf=/path/to/lhapdf/

	xterm	
[10:33 140: SHE	RPA-MC-1.1.0]\$ TOOLS/n	skeinstall -c
writing stdout	and stderr to 'sherpa_:	install log
installing modu	le ATOOLS	done
installing modu installing modu	le ATOOLS le HELICITIES	done done
installing modu installing modu installing modu	le ATOOLS le HELICITIES le BEAM	done done done
installing modu installing modu installing modu installing modu	le ATOOLS le HELICITIES le BEAH le PDF	done done done done
installing modu installing modu installing modu installing modu installing modu	le ATOOLS le HELICITIES le BEAH le PDF le MODEL	done done done done done done
installing modu installing modu installing modu installing modu installing modu installing modu	le ATOOLS le HELICITIES le BEAH le PDF le PDEL le PHASIC++	done done done done done done done
installing modu installing modu installing modu installing modu installing modu installing modu installing modu	le ATOOLS le HELICITIES le DEAM le MODEL le MADEL le EXTRA_XS	done done done done done done done

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Matrix elements: AMEGIC++

JHEP 0202(2002)044

Features

- Fully automated matrix element calculation in SM, MSSM and ADD using helicity amplitudes
- Expandable with additional vertices/models (Technicolor and Little Higgs being worked on by users)
- High performance by writing out matrix elements and dedicated phase space channels into compiled libraries

Validation

• MC4LHC cross section comparison

http://mlm.web.cern.ch/mlm/mcwshop03/mcwshop.html

- $e^+e^- \rightarrow 6f$ comparison with HELAC/PHEGAS EPJ C34(2004) 173 see \Rightarrow
- MSSM $2 \rightarrow 2$ comparison with WHIZARD/O'Mega & SMadGraph Phys. Rev. D73(2006)055005

Comput.Phys.Commun.174:876-902,2006

Features

- Similar to old Pythia parton shower Comput.Phys.Commun.82:74-90,1994
- Virtuality ordered
- Veto on increasing angles

Differences with respect to Pythia

- Choice of renormalisation and factorisation scales
- Treatment of masses in the PS
- Alterations for CKKW merging

More about two new shower modules: $\begin{array}{c} Csshower++\\ Addicic++\\ & \rightsquigarrow later! \end{array}$

Merging ME and PS

Combining the advantages, avoiding the disadvantages

Matrix Elements

Parton Showers

- + Exact to fixed order
- + Include all interferences
- Only low FS multiplicity

- + Resum all leading logarithms to all orders
- + Produce exclusive multi-particle final state
- No interference effects

₩

- Hard radiation well described by ME
- Correct intrajet evolution provided by PS

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

JHEP 0111(2001)063

Particularities

- Avoid double counting of emissions!
- Correct scale settings in all steps

Strategy

- Separate phase space by $Q_{\rm cut}$ (k_T type measure)
 - Region of jet production: ME
 - Region of jet evolution: PS
- $\bullet\,$ Select final state and kinematics according to cross section made finite by $Q_{\rm cut}$
- Backwards clustering to identify core process and "shower history"
- ${\scriptstyle \bullet}$ Reweight ME with Sudakov form factors and α_s scale corrections
- $\bullet\,$ Start PS at hard scale, and veto emissions harder than $Q_{\rm cut}$

 \Rightarrow Correct jet observables

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

CKKW merging: Z+jets @ Tevatron

D0 note 5066-CONF

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

CKKW merging: Z+jets @ Tevatron

D0 note 5066-CONF

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

S. Hoeche, F. Krauss, J. Winter: in preparation

Heavy flavour production in SHERPA

 Narrow width approximation ⇒ Full matrix element factorises into production and decay parts

$$\mathcal{A}^{(n)} = \mathcal{A}^{(\mathbf{n}_{\mathrm{prod}})}_{\mathrm{prod}} \otimes \prod_{i} \mathcal{A}^{(n_{i})}_{\mathrm{dec},i}$$

- AMEGIC++ provides diagrams for decay chains
- APACIC++ provides production and decay shower off heavy partons
- CKKW merging is applied separately and independently in production and decay

Implemented fully general and applicable e. g. in SUSY decay chains.

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

CKKW with decay chains

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Multiple parton interactions: AMISIC++

hep-ph/0601012

 $N_{
m charged}$ vs. $p_{
m T,jet1}$ in CTC

- Based on the PYTHIA model PRD36(1987)2019
- Parton showers attached to secondary interactions
- With CKKW: Starting scale for MI evolution $\mu_{\rm MI}$ chosen according to p_T of QCD partons in k_T -clustered core process
- Veto PS emissions harder than $\mu_{\rm MI}$

Although based on the same model as Pythia, tuned parameters can not be re-used, because of PS attached

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Cluster fragmentation: AHADIC++

Eur. Phys. J. C36 (2004) 381

Cluster fragmentation

- Large N_C -limit
- Split perturbative gluons non-perturbatively into q ar q
- Colour connected pairs form colourless clusters

- After evolution in parton showers: colour singlets close in phase space
- Clusters (\approx excited hadrons) decay into clusters or hadrons

Cluster fragmentation: AHADIC++

Eur. Phys. J. C36 (2004) 381

Dynamic cluster-hadron boundary

- Cluster decays $C \to CC$
- \bullet Decay product lighter than heaviest matching hadron \rightarrow Transition to hadron (compensate recoil locally)
- \bullet Initial cluster light enough \to Decay to hadron pair

Particularities

- Include diquarks throughout
- Use dipole splitting kinematics

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

AHADIC++: Results

LEP I data

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

AHADIC++: Results

LEP I data

Hadron and τ decays: HADRONS++

F. Krauss, T. Laubrich, FS: in preparation

Highlights

- Decay kinematics according to matrix elements with form factors
- Kinematical corrections for spin correlations
- Treatment of neutral meson mixing and related CP violation

Other features

- Mass smearing of unstable resonances
- Partonic decays for incomplete decay tables

Status

- Decay tables for \approx 400 particles
- $\bullet~\approx 2500~\text{decay channels}$
- ullet pprox 400 decay channels with form factors

Matrix elements and form factor models in $B \rightarrow \pi \nu_l \bar{l}$ F. Krauss, T. Laubrich, FS: in preparation

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Spin correlations in $h \rightarrow \tau^- \tau^+ \rightarrow \pi^- \nu_\tau \pi^+ \bar{\nu_\tau}$

F. Krauss, T. Laubrich, FS: in preparation

Angle between τ decay planes (Analytical results: Z.Phys.C64:21-30,1994)

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

CP violation in the interference

F. Krauss, T. Laubrich, FS: in preparation

Asymmetry in decays to common final state f

$$A_{CP}(t) = \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to f)}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to f)} = S \cdot \sin(\Delta m_B t) - C \cdot \cos(\Delta m_B t)$$

Example: $B_d \rightarrow J/\Psi K_S$ $S = \Im(\lambda_{f_{CP}})$ $= \sin(2\beta)$ = 0.725C = 0

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Inclusive observables

F. Krauss, T. Laubrich, FS: in preparation

Results for inclusive B^+ decay: π multiplicities and e^{\pm} spectrum

Comparison with EvtGen (Nucl.Instrum.Meth.A462:152-155,2001)

Soft physics: Fragmentation, Decays, YFS

Corrections for higher order QED effects: PHOTONS++ F. Krauss, M. Schönherr: in preparation

- Sums all contributions of soft photon radiation (real and virtual) using the Yennie-Frautschi-Suura-Formalism (YFS)
 - \Rightarrow exact as $k \rightarrow 0$, perturbative series for hard emission effects
- Hard emission effects up to $\mathcal{O}(\alpha)$ incorporated generally via approximated matrix elements in the guasi-collinear limit
- Important cases with $\mathcal{O}(\alpha)$ real and/or virtual exact matrix elements $V \to FF, V \to SS, S \to FF, S \to SS, \tau \to \ell \nu_{\ell} \nu_{\tau}$
- ME corrections for radiative semi-leptonic meson decays $(1 \rightarrow 3 + \gamma)$ under way (form factor model)
- Implemented for hadron and τ decays
- No limitation on final state complexity

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Leptonic hadron decays: $J/\psi \rightarrow \ell \bar{\ell}$

F. Krauss, M. Schönherr: in preparation

total radiated energy in the J/ψ rest frame

angular spectrum in the rest frame of the dipole

- soft only (dotted)
- collinear approximated ME (dashed)
- exact ME (solid)

Perturbative physics: ME and PS Underlying Event Soft physics: Fragmentation, Decays, YFS

Energy spectrum and angular radiation patterns for fixed kinematical configurations.

COMIX CSSHOWER++ and ADICIC++ Outlook

High multiplicity matrix elements: COMIX

T. Gleisberg, S. Höche: in preparation

- Revisited Berends-Giele recursion: JHEP08(2006)062 \Rightarrow new matrix element generator COMIX
- Fully general implementation of SM interactions, e. g.
 - pp $\rightarrow W/Z + N$ jets (N up to 6, all partons!)
 - pp \rightarrow N jets + t [W⁺b + M jets] \bar{t} [W⁻ \bar{b} + M jets] (N/M up to 2/1)
 - pp \rightarrow N gluons (N up to 12)
 - pp \rightarrow N jets (N up to 8, all partons!)

Example from MC4LHC comparison vs. COMIX

σ [pb]	Number of jets							
$e^-e^+ + QCD$ jets	0	1	2	3	4	5	6	
COMIX	723.5(4)	187.9(3)	69.7(2)	27.14(7)	11.09(4)	4.68(2)	2.02(2)	
ALPGEN	723.4(9)	188.3(3)	69.9(3)	27.2(1)	10.95(5)	4.6(1)	1.85(1)	
AMEGIC++	723.0(8)	188.2(3)	69.6(2)	27.21(6)	11.1(1)		. ,	

COMIX CSSHOWER++ and ADICIC++ Outlook

Merging with COMIX

Exclusive jet p_T in Z+jets production at the Tevatron

COMIX CSSHOWER++ and ADICIC++ Outlook

Merging with COMIX

Inclusive jet p_T in Z+jets production at the Tevatron

 $\begin{array}{l} \mbox{COMIX} \\ \mbox{Csshower++ and } \mbox{Adicic++} \\ \mbox{Outlook} \end{array}$

New showers: Csshower++ and Adliclic++

JHEP03(2008)038 and arXiv:0712.3913

- So far in SHERPA: Virtuality ordered, (old-)Pythia-like shower APACIC++.
- Recent efforts: Two new shower modules, to study shower and merging systematics.
- Will be easily switchable in future SHERPA

CSSHOWER++

- Based on Catani-Seymour dipole subtraction
- Dipole terms can be used to describe splittings
- Correct soft & collinear limits, better treatment of colour coherence

ADICIC++

- Emission off colour dipoles (associated to initial and/or final state colour lines)
- Idea implemented in Ariadne, very good performance for LEP/HERA
- In addition: Initial state emission formulated completely perturbative

 $\begin{array}{l} \mbox{COMIX} \\ \mbox{Csshower++ and } \mbox{Adicic++} \\ \mbox{Outlook} \end{array}$

First results with CSSHOWER++ and ADICIC++ (no merging yet)

COMIX Csshower++ and Addicic++ Outlook

Immediate future

- Merging between all combinations of shower and matrix element generators
- Inclusive decays, including spin correlations, finite width treatment

Ideas how to handle such a version "1.2" in the beginning? Experimental, but still available from GENSER?

Input from GENSER

- Please keep using our bug tracker for your suggestions.
- Latest issue reported: Making SHERPA relocatable. Good idea.
- Will also try to improve our LHAPDF linking, should help especially in non-standard installations like on GENSER.

http://sherpa-mc.de

- Downloads
- Announcement mailing list
- Documentation