SHERPA for LHCb

Frank Siegert ¹

Institute for Particle Physics Phenomenology Durham University

Seminar, TU Dortmund, 30.10.2008

Perturb

Soft physics

Outlook

¹for SHERPA: J. Archibald, T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, FS, J. Winter

Outline

This talk is only partly about B physics. Sorry! ² So what is it about? Event generation at the LHC.

Event Phases:

Perturbative Physics

- Initial state parton shower (QCD)
- Underlying event
- Signal process
- Final state parton shower (QCD)

Soft Physics

- Fragmentation
- Hadron decays B physics! Yay!
- QED radiation

Overview

Perturbative physics

Soft physics

²Thanks for inviting me anyways!

Multi-purpose event generator

- Developed since \sim 1999
- Traditional core strengths: Matrix elements for hard signal process, and their matching to the shower
- 1.1.0 released in April 2008, current bugfix release 1.1.2
- Available on GENSER
- Interfaces in ATLAS and CMS, soon also in LHCb (production and decay)

New features in 1.1 (\rightsquigarrow later)

- AHADIC++ Cluster fragmentation module
- HADRONS++ Complete hadron and τ decay module
- PHOTONS++ QED radiation in the YFS formalism
- CKKW merging for processes with decay chains
- Expandability through dynamically linked user libraries, e.g.: Hadron decay matrix elements, random number generators, BSM models for the signal process, ...

Overview

Perturbative physics

Soft physics

Features

- Fully automated matrix element calculation in SM, MSSM and ADD using helicity amplitudes
- Expandable with additional vertices/models (Technicolor and Little Higgs being worked on by users)
- High performance by writing out matrix elements and dedicated phase space channels into compiled libraries

Validation

- MC4LHC cross section comparison http://mlm.web.cern.ch/mlm/mcwshop03/mcwshop.html
- $e^+e^- \rightarrow 6f$ comparison with HELAC/PHEGAS EPJ C34(2004) 173 see \Rightarrow
- $\blacksquare MSSM \ 2 \rightarrow 2 \ comparison \ with \\ WHIZARD/O'Mega \ \& \ SMadGraph \\ Phys. Rev. D73(2006)055005 \\ \end{tabular}$

Overview

Perturbative physics

Matrix elements Shower

Merging Underlying event

Soft physics

Features

- Revisited Berends-Giele recursion: JHEP08(2006)062 ⇒ new matrix element generator COMIX
- Fully general implementation of SM interactions, e. g.
 - pp $\rightarrow W/Z + N$ jets (N up to 6, all partons!)
 - pp \rightarrow N jets + t [W⁺b + M jets] \bar{t} [W⁻ \bar{b} + M jets] (N/M up to 2/1)
 - pp \rightarrow N gluons (N up to 12)
 - pp \rightarrow N jets (N up to 8, all partons!)

Example from MC4LHC comparison vs. COMIX

σ [pb]	Number of jets						
$e^-e^+ + QCD$ jets	0	1	2	3	4	5	6
COMIX	723.5(4)	187.9(3)	69.7(2)	27.14(7)	11.09(4)	4.68(2)	2.02(2)
ALPGEN AMEGIC++	723.4(9) 723.0(8)	188.3(3) 188.2(3)	69.9(3) 69.6(2)	27.2(1) 27.21(6)	10.95(5) 11.1(1)	4.6(1)	1.85(1)

Overview

Perturbative physics

> Matrix elements Shower Merging

Underlying

Soft physics

Parton showers

APACIC++ Comput.Phys.Commun.174:876-902,2006

- Similar to old Pythia parton shower Comput.Phys.Commun.82:74-90,1994
- Virtuality ordered
- Veto on increasing angles
- Alterations for CKKW merging

Recent efforts: Two new shower modules, to study shower and merging systematics.

CSSHOWER++ JHEP 03 (2008), 038

Based on Catani-Seymour dipole subtraction

- Dipole terms can be used to describe splittings
- Correct soft & collinear limits, better treatment of colour coherence

ADICIC++ JHEP 07 (2008), 040

- Emission off colour dipoles (associated to initial and/or final state colour lines)
- Idea implemented in Ariadne, very good performance for LEP/HERA
- In addition: Initial state emission completely perturbative

Overview

Perturbative physics

> Matrix elements Shower

Merging Underlying event

Soft physics

Shower

=punas, & Py6.2 hadr.

p_T (e⁺e⁻)

d a d t

p_T [GeV]

100 120 140 160 180 200

Merging

Hard radiation well described by ME

Correct intrajet evolution provided by PS

Particularities

- Avoid double counting of emissions!
- Correct scale settings in all steps

Strategy

- Separate phase space by Q_{cut} (k_T type measure)
 - Region of jet production: ME
 - Region of jet evolution: PS
- \blacksquare Select jet multiplicity and kinematics according to ME above $Q_{\rm cut}$
- Backwards clustering to identify core process and "shower history"
- \blacksquare Reweight ME with Sudakov form factors and α_s scale corrections
- \blacksquare Start PS at hard scale, and veto emissions harder than $Q_{\rm cut}$

 \Rightarrow Correct jet observables

Overview

Perturbative physics

> Matrix elements Shower

Merging Underlying event

Soft physics

Overview

Perturbative physics

> Matrix elements Shower

Merging Underlying event

Soft physics

Overview

Perturbative physics

Matrix elements Shower

Merging Underlying event

Soft physics

$$N_{\rm charged}$$
 vs. $p_{{
m T,jet1}}$ in CTC

- Based on the PYTHIA model PRD36(1987)2019
- Parton showers attached to secondary interactions
- With CKKW: Starting scale for MI evolution μ_{MI} chosen according to p_T of QCD partons in k_T-clustered core process
- Veto PS emissions harder than $\mu_{\rm MI}$

Although based on the same model as Pythia, tuned parameters can not be re-used, because of PS attached

Overview

Perturbative physics

> Matrix elements Shower

Underlying event

Soft physics

Formation of colourless clusters

- Split perturbative gluons non-perturbatively into $q\bar{q}$
 - $\propto \alpha_s(p_\perp)/p_\perp^2$ (non-perturbative tunable α_s)
 - Limit allowed p_{\perp} (soft event phase!)
 - dipole kinematics with spectator (\rightarrow no fake gluon mass needed)
- Colour connected pairs form colourless clusters (\approx excited hadrons)

Cluster decay and transition: Dynamic cluster-hadron boundary

- Two cases for transition to hadrons, depending on cluster mass:
 - $m_C \approx$ mass of heaviest hadron with matching flavours
 - $\blacksquare \ m_C < {\rm summed} \ {\rm mass}$ of two heaviest hadrons it can decay into
 - In these cases competition between $C \to H$ and $C \to H_1 H_2$
- Otherwise: Cluster decay $C \rightarrow C_1 C_2$ (by emitting gluon)

Overview

Perturbative physics

Soft physics

Fragmentation

Hadron decays QED radiation

Highlights

- Decay kinematics according to matrix elements with form factors
- Kinematical corrections for spin correlations
- Treatment of neutral meson mixing and related CP violation

Other features

- Mass smearing of unstable resonances
- Partonic decays for incomplete decay tables

Status

- \blacksquare Decay tables for \approx 400 particles
- $\blacksquare \approx 2500$ decay channels
- \blacksquare \approx 400 decay channels with form factors
- Interface as DecayTool for LHCb under way

Overview

Perturbative physics

Soft physics

Fragmentation

Hadron decays QED radiation

Example: Form factor models in $B \rightarrow \pi \nu_l \bar{l}$

Overview

Perturbative physics

Soft physics

Fragmentation Hadron

decays QED radiation

Example: $B \to K^* l^+ l^-$

- flavour-changing neutral current in Standard Model only in higher orders
- highly suppressed SM amplitude (four vertices, one of them V_{ts} !)
- \blacksquare \Rightarrow high sensitivity to BSM physics
- Matrix element parametrisation: Ali, Ball, Handoko, Hiller (arXiv:hep-ph/9910221)

Overview

Perturbative physics

Soft physics

Fragmentation Hadron

decays QED radiation

■ reuse existing currents from semileptonic *B* decays and τ decays, e. g. $B \rightarrow \bar{D}\nu \bar{l}$ and $\tau \rightarrow \nu_{\tau}\pi^{+}\pi \implies B \rightarrow \bar{D}\pi^{+}\pi$

Overview

Perturbative physics

Soft physics

Fragmentation Hadron decays QED

radiatio

Spin correlations in $h \rightarrow \tau^- \tau^+ \rightarrow \pi^- \nu_\tau \pi^+ \bar{\nu_\tau}$

F. Krauss, T. Laubrich, FS: in preparation

What are spin correlations about?

- Decay cascade ⇔ cutting propagators into polarisation vectors/spinors/...
- Correlation between polarisation in "left" ME and "right" ME not accounted for if they are done independently ⇒ correction applied by spin correlation algorithm

Overview

Perturbative physics

Soft physics

Fragmentation

Hadron decays QED radiation

Outlook

Angle between τ decay planes (Analytical results: Z.Phys.C64:21-30,1994)

Explicit mixing probabilities

$$\begin{split} & P(B^0 \to \bar{B}^0) = \left| \left\langle \bar{B}^0 \middle| \ B^0_{\rm phys}(t) \right\rangle \right|^2 \sim \left| \frac{q}{p} \right|^2 \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right) \\ & P(\bar{B}^0 \to B^0) = \left| \left\langle B^0 \middle| \ \bar{B}^0_{\rm phys}(t) \right\rangle \right|^2 \sim \left| \frac{p}{q} \right|^2 \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right) \end{split}$$

Overview

Perturbativ physics

Soft physics

Fragmen-

Hadron decays QED radiation

Asymmetry in decays to common final state \boldsymbol{f}

$$A_{CP}(t) = \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to f)}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to f)} \to S \cdot \sin(\Delta m_B t) - C \cdot \cos(\Delta m_B t)$$

Overview

Perturbative physics

Soft physics

Fragmentation Hadron decays QED radiation

Results for inclusive B^+ decay: π multiplicities and e^{\pm} spectrum

Comparison with EvtGen (Nucl.Instrum.Meth.A462:152-155,2001)

1 / 25

Fragmen-

Hadron decays

radiation

Overview

Perturbative physics

Soft physics

Fragmentation Hadron decays QED radiation

- Sums all contributions of soft photon radiation (real and virtual) using the Yennie-Frautschi-Suura-Formalism (YFS) ⇒ exact as k → 0, perturbative series for hard emission effects
- Below Hard emission effects up to $\mathcal{O}(\alpha)$ incorporated generally via approximated matrix elements in the quasi-collinear limit
- Important cases with $\mathcal{O}(\alpha)$ real and/or virtual exact matrix elements $V \to FF, V \to SS, S \to FF, S \to SS, \tau \to \ell \nu_{\ell} \nu_{\tau}$
- ME corrections for radiative semi-leptonic meson decays $(1 \rightarrow 3 + \gamma)$ under way (form factor model)
- \blacksquare Implemented for hadron and τ decays
- No limitation on final state complexity

total radiated energy in the J/ψ rest frame

angular spectrum in the rest frame of the dipole

- soft only (dotted)
- collinear approximated ME (dashed)
- exact ME (solid)

Perturbative physics

Soft physics

Fragmentation Hadron decays QED radiation

Multipoles: $(B \rightarrow D^{*-} + \text{Pions})$

Energy spectrum and angular radiation patterns for fixed kinematical configurations.

Outlook

Immediate future

- Merging between all combinations of shower and matrix element generators
- Inclusive decays, including spin correlations, finite width treatment

Distant future

- NLO matrix elements
- Merging shower with NLO matrix elements

http://sherpa-mc.de

- Downloads
- Announcement mailing list
- Documentation

Overview

Perturbative physics

Soft physics