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Higher-order tree-level calculations

Two approaches

Matrix Elements

+

2

+ Exact to fixed order

+ Include all interferences

+ NC = 3 (summed or sampled)

− Perturbation breaks down due to
large logarithms

− Only low FS multiplicity

Parton Showers

+ Resum logarithmically enhanced contributions
to all orders

+ Produce high-multiplicity final state

− Only approximation to ME for splitting

− No interference effects

− Large NC limit only

⇓

Goal: Combine advantages

Describe particular final state by ME (hard QCD radiation)

Don’t spoil the inclusive picture provided by the PS (intrajet evolution)



Basis: QCD evolution

Evolution equation in terms of Sudakov form factor ∆
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Kernel describes parton splitting: Kab(z, t) → 1
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Solution: Probability for no (forward) shower branching between two scales

Pno, a(t, t′) =
∆a(µ2, t′)

∆a(µ2, t)

!
=R

⇒ MC method for dicing successive branching scales using random number R ∈ [0, 1]

Preparation for ME/PS merging

Use different splitting kernels in different regions in phase space, but:
Preserve total evolution equation!

Ellis, Stirling, Webber: QCD and Collider Physics



Preparation: Slicing the phase space

Emission phase space divided by parton separation criterion Qab(z, t)

K
PS
ab

(z, t) = Kab(z, t) Θ
h

Qcut − Qab(z, t)
i

and K
ME
ab

(z, t) = Kab(z, t) Θ
h

Qab(z, t) − Qcut

i

Qab(z, t) has to identify logarithmically enhanced phase space regions

Similar to a jet measure

Evolution factorises

Sudakov form factor:
∆a(µ2, t) = ∆PS

a (µ2, t′) ∆ME
a (µ2, t′)

No-branching probability:

Pno, a(t, t′) = PPS
no, a(t, t′) PME

no, a(t, t′)

Simple rules so far for each regime:

Independent evolution according to no-branching probabilities (e.g. by MC-method)

Veto emissions below/above Qcut



Getting the MEs into the game

Want to use exact matrix elements in ME regime

Seems trivial: Use exact matrix elements as kernel, instead of approximation

But: Integration in terms of shower variables unfeasible for high multiplicity

Alternative Idea: Start from ME generated event, where the integration can be optimised

Examples possible with tree ME generator Comix JHEP12(2008)039

pp → 8 jets

pp → tt̄ + 6 jets

pp → W/Z + 6 jets

pp → γγ + 6 jets

gg → 12 g



Merging algorithm

Outline of algorithm

1 Generate ME event above Qcut according to σ and dσ X
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Merging algorithm: Branching history

Translate ME event into shower language

Problem: ME only gives final state, no history
Solution: Backward-clustering (running the shower reversed)

1 Take N-particle final state

2 Identify most probable splitting (lowest shower measure)

3 Recombine partons using inverted shower kinematics
→ N-1 particles + splitting variables for one node

4 Repeat 2 and 3 until core process

⇓
Most probable branching history a la shower.

Now let’s use it ...

⇓

t1

t2



Merging algorithm

Outline of algorithm

1 Generate ME event above Qcut according to σ and dσ X

2 Translate ME event into shower language: Branching history X

3 Reweight αs(µ2) → αs(p2
⊥) for each branching



Merging algorithm

Outline of algorithm

1 Generate ME event above Qcut according to σ and dσ X

2 Translate ME event into shower language: Branching history X

3 Reweight αs(µ2) → αs(p2
⊥) for each branching X

4 Start shower evolution for ME regime ⇒ Reject events containing emission



Merging algorithm: Emissions in ME regime

Interpretation of PME
no, a(t, t′)

Vetoed shower above Qcut

Truncated at production and decay scale t′, t

Has to be allowed to preserve full QCD evolution.

What if something is emitted?

ME

↔

PS

Emissions in this regime

should be described by MEs!

Consequences

Reduction of cross section σ → σ · PME
no, a(t, t′)

Compensated by higher order ME’s

⇒ Leading order cross section stable



Merging algorithm: Emissions in ME regime

Interpretation of PME
no, a(t, t′)

Vetoed shower above Qcut

Truncated at production and decay scale t′, t

Has to be allowed to preserve full QCD evolution.

What if something is emitted?

ME

↔

PS

Emissions in this regime

should be described by MEs!

⇒ Reject event to avoid
double counting

Consequences

Reduction of cross section σ → σ · PME
no, a(t, t′)

Compensated by higher order ME’s

⇒ Leading order cross section stable



Merging algorithm

Outline of algorithm

1 Generate ME event above Qcut according to σ and dσ X

2 Translate ME event into shower language: Branching history X

3 Reweight αs(µ2) → αs(p2
⊥) for each branching X

4 Start shower evolution for ME regime ⇒ Reject events containing emission X

5 Start shower evolution for PS regime ⇒ Add emissions



Merging algorithm: Emissions in PS regime

Interpretation of PPS
no, a(t, t′)

Vetoed shower below Qcut

Truncated at production and decay scale t′, t

Truncated shower

Some splittings are pre-determined by ME

t1 t2

Q2 > Qcut

t′

Q′ < Qcut

> >

Q1 > Qcut

Mismatch of Q and t allows intermediate radiation!
⇒ “Truncated” shower necessary to fill phase space below Qcut

1 Qcut-vetoed shower between t1 and t2

2 Then insert pre-determined node t2

3 Restart evolution from there



Merging algorithm

Outline of algorithm

1 Generate ME event above Qcut according to σ and dσ X

2 Translate ME event into shower language: Branching history X

3 Reweight αs(µ2) → αs(p2
⊥) for each branching X

4 Start shower evolution for ME regime ⇒ Reject events containing emission X

5 Start shower evolution for PS regime ⇒ Add emissions X
⇓

Evolution according to Pno, a(t, t′) = PPS
no, a(t, t′) PME

no, a(t, t′) preserved

Emissions above Qcut ME-corrected



Is it relevant? Results for pp̄ → e+e− + jets at
√

s = 1960 GeV

Algorithm implemented in Sherpa framework

Csshower++ Shower based on Catani-Seymour subtraction

Comix Matrix elements based on Berends-Giele recursion

Jet multiplicity
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Is it consistent? Results for pp̄ → e+e− + jets at
√

s = 1960 GeV

Consistency tests

Total LO cross section stable?

Observables independent from “unphysical” merging cut?

Total cross sections
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Is it consistent? Results for e+e− → jets at
√

s = 91GeV

Consistency tests

Total LO cross section stable?

Observables independent from “unphysical” merging cut?

Total cross sections
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Backup



Parton separation criterion

Reminder

K
PS
ab

(z, t) = Kab(z, t) Θ
h

Qcut − Qab(z, t)
i

and K
ME
ab

(z, t) = Kab(z, t) Θ
h

Qab(z, t) − Qcut

i

Qcut has to regularise QCD radiation MEs (like a jet resolution)

Otherwise completely arbitrary until now

Q2
ij = 2 pipj min

k 6=i,j

2

Ck
i,j + Ck

j,i

Final state partons (ij) → i, j

Ck
i,j =

8

>

>

<

>

>

:

pipk

(pi + pk)pj
−

m2
i

2 pipj
if j = g

1 else

Initial state parton a → (aj) j

Ck
a,j = Ck

(aj), j

with paj = pa − pj

The minimum is over all possible colour partners k of parton (ij)

Identifies regions of soft (Eg → 0) and/or (quasi-)collinear (≈ k2
⊥ → 0) enhancements

Similar to jet resolution (e.g. Durham in e+e− case), but with flavour information



Highest multiplicity treatment

So far: Rejection of emissions in ME regime ⇒ Sudakov weighted MEs

ME

↔

PS
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Highest multiplicity treatment

So far: Rejection of emissions in ME regime ⇒ Sudakov weighted MEs

ME

↔

PS

What if higher order ME not available?

Highest multiplicity events

N = Nmax emissions from ME ⇒ correct branching probability up to scale of last ME
emission, tmin (global, for all legs)

PS must account for all emissions t < tmin, even if Q > Qcut

Implemented by employing standard PS evolution beyond last ME emission

⇓
Hard radiation respected

Remaining phase space filled


