Merging tree matrix elements with truncated showers

Frank Siegert 1

Institute for Particle Physics Phenomenology, Durham University & University College London

26th June 2009, UCL

¹In collaboration with: Stefan Höche, Frank Krauss, Steffen Schumann, see JHEP05(2009)053 (arXiv:0903.1219)

Two approaches

Matrix Elements

- Exact to fixed order
- + Include all interferences
- + $N_C = 3$ (summed or sampled)
- Perturbation breaks down due to large logarithms
- Only low FS multiplicity

Parton Showers

- + Resum logarithmically enhanced contributions to all orders
- + Produce high-multiplicity final state
- Only approximation to ME for splitting
- No interference effects
- Large N_C limit only

Goal: Combine advantages

- Describe particular final state by ME (hard QCD radiation)
- Don't spoil the inclusive picture provided by the PS (intrajet evolution)

Evolution equation in terms of Sudakov form factor Δ

$$\frac{\partial}{\partial \log(t/\mu^2)} \, \frac{g_a(z,t)}{\Delta_a(\mu^2,t)} = \frac{1}{\Delta_a(\mu^2,t)} \int_z^{\zeta_{\rm max}} \frac{\mathrm{d}\zeta}{\zeta} \, \sum_{b=q,g} \mathcal{K}_{ba}(\zeta,t) \, g_b(z/\zeta,t)$$

$$\Delta_a(\mu^2, t) = \exp \left\{ -\int_{\mu^2}^t \frac{d\bar{t}}{\bar{t}} \int d\zeta \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(\zeta, \bar{t}) \right\}$$

- $\text{ Kernel describes parton splitting: } \mathcal{K}_{ab}(z,t) \to \frac{1}{\mathrm{d}\sigma_a^{(N)}(\Phi_N)} \, \frac{\mathrm{d}\sigma_b^{(N+1)}(z,t;\Phi_N)}{\frac{\mathrm{d}\log(t/\mu^2)\,\mathrm{d}z}}$
- Solution: Probability for no (forward) shower branching between two scales

$$\mathcal{P}_{\text{no, }a}(t,t') = \frac{\Delta_a(\mu^2,t')}{\Delta_a(\mu^2,t)} \stackrel{!}{=} \mathcal{R}$$

 \Rightarrow MC method for dicing successive branching scales using random number $\mathcal{R} \in [0,1]$

Preparation for ME/PS merging

Use different splitting kernels in different regions in phase space, but:

Preserve total evolution equation!

Preparation: Slicing the phase space

Emission phase space divided by parton separation criterion $Q_{ab}(\boldsymbol{z},t)$

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- ullet $Q_{ab}(z,t)$ has to identify logarithmically enhanced phase space regions
- Similar to a jet measure

Evolution factorises

Sudakov form factor:

$$\Delta_a(\mu^2, t) = \Delta_a^{\rm PS}(\mu^2, t') \; \Delta_a^{\rm ME}(\mu^2, t')$$

No-branching probability:

$$\mathcal{P}_{\text{no, }a}(t,t') = \mathcal{P}_{\text{no, }a}^{\text{PS}}(t,t') \, \mathcal{P}_{\text{no, }a}^{\text{ME}}(t,t')$$

Simple rules so far for each regime:

- Independent evolution according to no-branching probabilities (e.g. by MC-method)
- ightharpoonup Veto emissions below/above Q_{cut}

Getting the MEs into the game

Want to use exact matrix elements in ME regime

- Seems trivial: Use exact matrix elements as kernel, instead of approximation
- $\, \circ \,$ But: Integration in terms of shower variables unfeasible for high multiplicity
- Alternative Idea: Start from ME generated event, where the integration can be optimised

JHEP12(2008)039

Examples possible with tree ME generator Comix

- $pp \rightarrow 8 \text{ jets}$
- $pp \rightarrow t\bar{t} + 6$ jets • $pp \rightarrow W/Z + 6$ jets
- $\circ pp \rightarrow vv/2 + 0$ jets
- $pp \rightarrow \gamma \gamma + 6$ jets • $gg \rightarrow 12 g$

Outline of algorithm

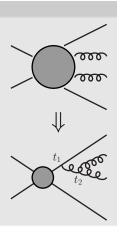
Outline of algorithm

- ① Generate ME event above Q_{cut} according to σ and $d\sigma$ \checkmark
- Translate ME event into shower language: Branching history

Merging algorithm: Branching history

Translate ME event into shower language

Problem: ME only gives final state, no history


Solution: Backward-clustering (running the shower reversed)

- Take N-particle final state
- 2 Identify most probable splitting (lowest shower measure)
- ③ Recombine partons using inverted shower kinematics → N-1 particles + splitting variables for one node
- Repeat 2 and 3 until core process

Ш

Most probable branching history a la shower.

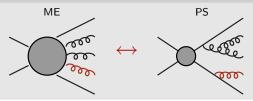
Now let's use it ...

Outline of algorithm

- ① Generate ME event above Q_{cut} according to σ and $d\sigma$
- 3 Reweight $\alpha_s(\mu^2) o \alpha_s(p_\perp^2)$ for each branching

Outline of algorithm

- ① Generate ME event above Q_{cut} according to σ and $d\sigma$
- 3 Reweight $\alpha_s(\mu^2) \to \alpha_s(p_\perp^2)$ for each branching \checkmark


Merging algorithm: Emissions in ME regime

Interpretation of $\mathcal{P}^{\mathrm{ME}}_{\mathrm{no},\,a}(t,t')$

- ullet Vetoed shower above $Q_{
 m cut}$
- ullet Truncated at production and decay scale t', t

Has to be allowed to preserve full QCD evolution.

What if something is emitted?

Emissions in this regime should be described by MEs!

Consequences

- ullet Reduction of cross section $\sigma o \sigma \cdot \mathcal{P}_{\mathrm{no},\,a}^{\mathrm{ME}}(t,t')$
- Compensated by higher order ME's
 - ⇒ Leading order cross section stable

Merging algorithm: Emissions in ME regime

Interpretation of $\mathcal{P}_{\mathrm{no},\,a}^{\mathrm{ME}}(t,t')$

- Vetoed shower above Q_{cut}
- ullet Truncated at production and decay scale t', t

Has to be allowed to preserve full QCD evolution.

What if something is emitted?

Emissions in this regime should be described by MEs!

⇒ Reject event to avoid double counting

Consequences

- ullet Reduction of cross section $\sigma o \sigma \cdot \mathcal{P}_{\mathrm{no},\,a}^{\mathrm{ME}}(t,t')$
- Compensated by higher order ME's
 - ⇒ Leading order cross section stable

Outline of algorithm

- ① Generate ME event above Q_{cut} according to σ and $d\sigma$
- 3 Reweight $\alpha_s(\mu^2) \to \alpha_s(p_\perp^2)$ for each branching \checkmark
- \P Start shower evolution for ME regime \Rightarrow Reject events containing emission $\sqrt{}$
- Start shower evolution for PS regime ⇒ Add emissions

Merging algorithm: Emissions in PS regime

Interpretation of $\mathcal{P}^{\mathrm{PS}}_{\mathrm{no},\,a}(t,t')$

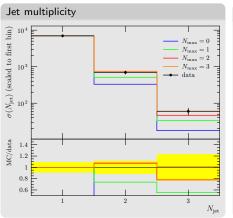
- ullet Vetoed shower **below** $Q_{
 m cut}$
- ullet Truncated at production and decay scale t', t

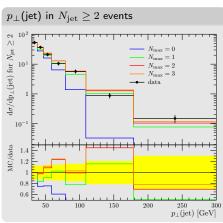
Truncated shower

Some splittings are pre-determined by ME

- ① Q_{cut} -vetoed shower between t_1 and t_2
- ② Then insert pre-determined node t_2
- 3 Restart evolution from there

Outline of algorithm

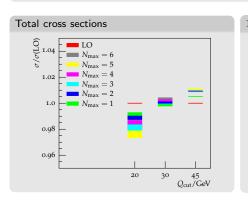

- $\ \, \textbf{ } \ \, \textbf{ } \ \,$ Generate ME event above Q_{cut} according to σ and $d\sigma$
- ② Translate ME event into shower language: Branching history √
- ${f 3}$ Reweight $lpha_s(\mu^2) o lpha_s(p_\perp^2)$ for each branching ${f \checkmark}$
- \P Start shower evolution for ME regime \Rightarrow Reject events containing emission $\sqrt{}$
- $\$ Start shower evolution for PS regime \Rightarrow Add emissions $\sqrt{\}$

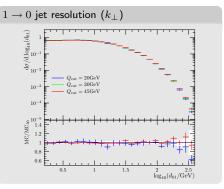

Evolution according to $\mathcal{P}_{\mathrm{no},\,a}(t,t') = \mathcal{P}_{\mathrm{no},\,a}^{\mathrm{PS}}(t,t')\,\mathcal{P}_{\mathrm{no},\,a}^{\mathrm{ME}}(t,t')$ preserved Emissions above Q_{cut} ME-corrected

Algorithm implemented in Sherpa framework

Csshower++ Shower based on Catani-Seymour subtraction

COMIX Matrix elements based on Berends-Giele recursion

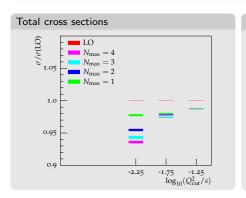


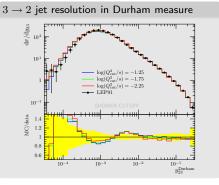


Is it consistent? Results for $p\bar{p} \rightarrow e^+e^- + {\rm jets}$ at $\sqrt{s} = 1960\,{\rm GeV}$

Consistency tests

- Total LO cross section stable?
- Observables independent from "unphysical" merging cut?






Is it consistent? Results for $e^+e^- \to {\rm jets}$ at $\sqrt{s}=91\,{\rm GeV}$

Consistency tests

- Total LO cross section stable?
- Observables independent from "unphysical" merging cut?

Parton separation criterion

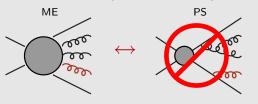
Reminder

$$\mathcal{K}_{ab}^{\mathrm{PS}}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}_{ab}^{\mathrm{ME}}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

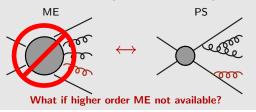
- ullet $Q_{
 m cut}$ has to regularise QCD radiation MEs (like a jet resolution)
- Otherwise completely arbitrary until now

$$Q_{ij}^2 = 2 p_i p_j \min_{k \neq i,j} \frac{2}{C_{i,j}^k + C_{j,i}^k}$$

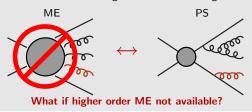
Final state partons $(ij) \rightarrow i, j$


Initial state parton
$$a \rightarrow (aj) j$$

$$C_{i,j}^k = \left\{ \begin{array}{l} \frac{p_i p_k}{(p_i + p_k) p_j} - \frac{m_i^2}{2 \, p_i p_j} & \text{if } j = g \\ \\ 1 & \text{else} \end{array} \right. \qquad \begin{array}{l} C_{a,j}^k = C_{(aj),\,j}^k \\ \\ \text{with } p_{aj} = p_a - p_j \end{array}$$


- ullet The minimum is over all possible colour partners k of parton (ij)
- ullet Identifies regions of soft $(E_g o 0)$ and/or (quasi-)collinear ($pprox k_\perp^2 o 0$) enhancements
- ullet Similar to jet resolution (e.g. Durham in e^+e^- case), but with flavour information

Highest multiplicity treatment


So far: Rejection of emissions in ME regime ⇒ Sudakov weighted MEs

So far: Rejection of emissions in ME regime ⇒ Sudakov weighted MEs

So far: Rejection of emissions in ME regime ⇒ Sudakov weighted MEs

Highest multiplicity events

- $N=N_{\rm max}$ emissions from ME \Rightarrow correct branching probability up to scale of last ME emission, $t_{\rm min}$ (global, for all legs)
- ${ to}$ PS must account for all emissions $t < t_{\min}$, even if $Q > Q_{\rm cut}$
- Implemented by employing standard PS evolution beyond last ME emission

