Photon production processes and ME+PS merging

Frank Siegert ¹

Institute for Particle Physics Phenomenology, Durham University; Department of Physics & Astronomy, University College London

9 December 2009, Freiburg

¹In collaboration with Stefan Höche & Steffen Schumann

Introduction	
0000	

Why look at photon production?

Jet energy calibration

- Calibrate calorimeter response to jets
- Photons in detector well understood
- $\Rightarrow\,$ Use conservation of p_{\perp} in "clean" events with one jet and one photon
 - ${\scriptstyle \bullet}\,$ Due to statistics useful mainly at low- p_{\perp}

Background to new physics

•
$$h \rightarrow \gamma \gamma$$
 (+ jets)

Many BSM models produce final state photons

Anomalous gauge couplings

- Probe anomalous structure of triple-gauge couplings
- ${\scriptstyle \odot}$ Especially production of high p_{\perp} photons interesting

Introduction ••••• "Traditional" approach Prompt photons in the Monte-Carlo

Conclusions O

"Non-prompt" component: Photons from $\pi^0 \to \gamma \gamma$, $\eta \to \gamma \gamma$, ...

- Can be separated from prompt photons experimentally by looking at shower shapes
- \Rightarrow Not considered in the following

Relevance of fragmentation component

DØ : Phys. Lett. B639 (2006), 151158

Alternative approach: Parton-shower Monte Carlo

Monte-Carlo event generation

Perturbative Physics

- Initial state parton shower^(*)
- Signal process*
- Final state parton shower*
- Underlying event

Soft Physics

- Hadronisation
- Hadron decays

*PROMPT PHOTON PRODUCTION:

- ▶ LO matrix elements
 ⇒ "direct" component
- Interleaved parton shower for $QCD \oplus QED$ evolution \Rightarrow Models $D_{q,g}^{\gamma}(z, Q^2)$

Introduction	Prompt photons in the Monte-Carlo	Conclusions O
Why can this be split into different e	vent phases?	

Collinear factorisation of QCD radiation

- Singularities from collinear emissions factorised off at a given scale
 - $\Rightarrow\,$ Parton distribution functions (PDF) in initial state
 - \Rightarrow Fragmentation functions (FF) in final state

non-perturbative objects

Evolution equations

• Evolution of PDF/FF between different scales calculable perturbatively (DGLAP):

$$f_a(x,Q^2) = f_a(x,Q_0^2) + \int_{Q_0^2}^{Q^2} \frac{dt}{t} \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} \sum_{b=q,g} \hat{P}_{ab}(z) f_b(\frac{x}{z},t)$$

- \Rightarrow Higher resolution scale = lower scale + parton splitting
- Differential version of that equation in pictures:

Introduction 0000

Parton-shower Monte Carlo

Solving this evolution equation: Parton shower algorithm

- Task: Dice splitting scale Q^2 given a scale Q^2_0 at which a parton was produced,
- Use Sudakov-formalism to solve it (+ some tricks)
 - \Rightarrow **Probability for no emission** between two scales

$$\Delta_a(Q_0^2, Q^2) = \exp\left\{-\int_{Q_0^2}^{Q^2} \frac{\mathrm{d}t}{t} \int_{z_-}^{z_+} \mathrm{d}z \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(z, t)\right\}$$

- Example: Kernel $\mathcal{K}_{ab}(z,t) = \frac{\alpha_s}{2\pi} P_{ab}(z)$
- ${\rm \circ}\,$ Terminate evolution before entering hadronisation regime $Q^2 \approx 1 {\rm GeV}^2$

CSSHOWER++ - Parton shower based on dipole subtraction

- Emissions ordered in $t \equiv k_{\perp}^2$
- Based on Catani-Seymour subtraction terms
 - $\circ~$ Projection onto leading term in $1/N_C$
 - Spin averaged
 - \Rightarrow Shower algorithm based on colour-connected emitter-spectator dipoles

$$\mathcal{K}^{\rm QCD}_{(ij)i}(z,\mathbf{k}_{\perp}^2) \;=\; \frac{\alpha_s(\mathbf{k}_{\perp}^2)}{2\pi}\; J(\mathbf{k}_{\perp}^2,z)\; \sum_k \langle \mathbf{V}^{\rm QCD}_{(ij)i,k}(\mathbf{k}_{\perp}^2,z)\rangle \quad \text{with} \quad z \;=\; \frac{p_i p_k}{(p_i+p_j)p_k}$$

Modifications of shower for interleaved $\mathsf{QCD}{\oplus}\mathsf{QED}$ evolution

Modifications for QED

 $\circ\,$ No interference between QCD and QED at NLO \Rightarrow Emission probabilities factorise trivially

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{(\mathbf{QCD})}(Q_0^2, Q^2) \Delta_a^{(\mathbf{QED})}(Q_0^2, Q^2)$$

 ${\scriptstyle \odot}$ Implemented by adding splitting functions for $qq\gamma$ vertex

$$\mathcal{K}_{(ij)i}^{\mathbf{QED}}(z,\mathbf{k}_{\perp}^{2}) = \frac{\alpha(\mathbf{k}_{\perp}^{2})}{2\pi} J(\mathbf{k}_{\perp}^{2},z) \sum_{k} \langle \mathbf{V}_{(ij)i,k}^{\mathbf{QED}}(\mathbf{k}_{\perp}^{2},z) \rangle$$

- ${\scriptstyle \odot}$ Difference to large N_C QCD: Not exactly one colour partner for dipole
- Neglects (negative) interference from legs with same-sign charges
- Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)
- Does this actually work? Let's look at some data ...

Fragmentation function at LEP (preliminary)

ALEPH: Z. Phys. C69 (1996), 365378

Fragmentation function at LEP (preliminary)

ALEPH: Z. Phys. C69 (1996), 365378

Introduction 0000 Prompt photons in the Monte-Carlo

Conclusions O

ME+PS Merging – motivation

- + Exact to fixed order
- + Include all interferences
- + $N_C = 3$ (summed or sampled)
- Perturbation breaks down due to large logarithms
- Only low FS multiplicity

- + Resum logarithmically enhanced contributions to all orders
- + Produce high-multiplicity final state
- Only approximation to ME for splitting
- Large N_C limit only

Introduction 0000 Prompt photons in the Monte-Carlo

Conclusions O

ME+PS Merging – motivation

- + Exact to fixed order
- + Include all interferences
- + $N_C = 3$ (summed or sampled)
- Perturbation breaks down due to large logarithms
- Only low FS multiplicity

- + Resum logarithmically enhanced contributions to all orders
- + Produce high-multiplicity final state
- Only approximation to ME for splitting
- Large N_C limit only

₩

Goal: Combine advantages

- Describe particular final state by ME (hard QCD radiation)
- Don't spoil the inclusive picture provided by the PS (intrajet evolution)

More motivation for ME+PS merging

Reminder: Shower ingredients

- Emission probabilities Δ_a
- Not mentioned so far: Kinematical reshuffling after branching

Uncertainties in this model

- Especially the third ingredient has big ambiguities!
- Different kinematics can have different properties for resummation
 - \rightarrow Z. Nagy Talk at EPS HEP 2009, Krakow

 \Rightarrow Merging with exact matrix elements can help get less dependent of such ambiguities

Recap: Merging algorithm

JHEP 0905 (2009) 053 [arXiv:0903.1219 [hep-ph]]

Main idea

Phase space slicing for extra QCD radiation:

- Soft/collinear emissions from parton shower
- Hard emissions from matrix element

More formally

Effectively different splitting kernels \mathcal{K} for hard vs. soft/collinear radiation

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- ${\scriptstyle \circ }$ Boundary determined by value of $Q_{\rm cut}$
- ${\circ}~Q_{\rm cut}$ has to regularise QCD radiation MEs (like a jet resolution), otherwise completely arbitrary until now

Evolution factorises

$$\Delta_a(\mu^2,t) = \Delta_a^{\rm PS}(\mu^2,t') \; \Delta_a^{\rm ME}(\mu^2,t')$$

 \Rightarrow Independent evolution in both regimes

 \Rightarrow If careful: Possible to correct hard jets without spoiling resummation features

Merging algorithm

Outline of algorithm

(1) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$ /

Merging algorithm

Outline of algorithm

-) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- ② Translate ME event into shower language: Branching history

Merging algorithm: Branching history

Translate ME event into shower language

Problem: ME only gives final state, no history **Solution:** Backward-clustering (running the shower reversed)

- Take N-particle final state
- 2 Identify most probable splitting (lowest shower measure)
- ④ Repeat 2 and 3 until core process

Most probable branching history a la shower. Now let's use it ...

Merging algorithm

Outline of algorithm

- (1) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history \checkmark
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$ for each branching

Merging algorithm

Outline of algorithm

-) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history \checkmark
- 3 Reweight $\alpha_s(\mu^2) \to \alpha_s(p_{\perp}^2)$ for each branching \checkmark

④ Start shower evolution:

• Emissions in PS regime?

Merging algorithm: Emissions in PS regime

Interpretation of $\mathcal{P}_{\mathrm{no,}\ a}^{\mathrm{PS}}(t,t')$

- ${\circ}\,$ No-branching probability for shower emissions below $Q_{\rm cut}$
- Truncated at production and decay scale t', t

Truncated shower Some splittings are pre-determined by ME $Q_1 > Q_{cut}$ $Q' < Q_{cut}$ $Q_2 > Q_{cut}$ $t_1 > t' > t_2$ v_2 Wismatch of Q and t allows intermediate radiation!

- \Rightarrow "Truncated" shower necessary to fill phase space below $Q_{\rm cut}$
 - (1) Shower between t_1 and t_2
 - 2 Then insert pre-determined node t_2
 - ③ Restart evolution from there

Merging algorithm

Outline of algorithm

-) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history \checkmark
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$ for each branching \checkmark

④ Start shower evolution:

- Emissions in PS regime? \Rightarrow Keep
- Emission in ME regime?

Merging algorithm: Emissions in ME regime

- ${\scriptstyle \odot}$ No-branching probability for shower emissions above $Q_{\rm cut}$
- ${\scriptstyle \bullet}$ Truncated at production and decay scale t^\prime,t

Has to be allowed in shower evolution, but:

Merging algorithm: Emissions in ME regime

- ${\scriptstyle \circ }$ No-branching probability for shower emissions above $Q_{\rm cut}$
- ${\scriptstyle \bullet}$ Truncated at production and decay scale t^\prime,t

Has to be allowed in shower evolution, but:

Consequences

- Reduction of cross section $\sigma \to \sigma \cdot \mathcal{P}_{\mathrm{no}, a}^{\mathrm{ME}}(t, t')$
- Compensated by higher order ME's

 \Rightarrow Leading order cross section stable

Merging algorithm

Outline of algorithm

- (1) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history \checkmark
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$ for each branching \checkmark
- ④ Start shower evolution: ▼
 - Emissions in PS regime? \Rightarrow Keep
 - Emission in ME regime? \Rightarrow Reject event

₩

Evolution in PS regime preserved Emissions above $Q_{\rm cut}$ ME-corrected

Photons in Merging

The good thing

Nothing changes!

- Add QED radiation matrix elements
- Add QED radiation in shower
- Rest stays the same, including rejection

Completely democratic treatment of photons and partons

Separation criterion

- \circ In principle, $Q_{\rm cut}$ or even the form of Q_{ij} , can be chosen separately for QCD and QED
- \circ Might be useful for analyses requiring isolated photons \Rightarrow Would allow to produce photons in analysis region dominantly by matrix-element
- E.g. isolation in cone with radius D and minimal p_{\perp} for photons

$$\Rightarrow \text{ could use } Q_{ij}^2 = \min(p_{\perp,i}^2, p_{\perp,j}^2) \frac{\Delta \pi_{ij}^2 + \Delta \phi_{ij}^2}{D^2} \text{ (like } k_\perp \text{ jet algorithm)}$$

Results for diphoton production at Tevatron (preliminary)

CDF: Phys. Rev. Lett. 95 (2005), 022003

Results for diphoton production at Tevatron (preliminary)

CDF: Phys. Rev. Lett. 95 (2005), 022003

Results for diphoton production at Tevatron (preliminary)

CDF: Phys. Rev. Lett. 95 (2005), 022003

Conclusions

Conclusions

- Photon production processes play key role in collider experiments
- Monte-Carlo parton showers useful tool for collider physics
- Natural incorporation of QED splittings in parton shower
- Useful to supplement PS with higher order tree level ME
- Democratic treatment of photons and partons
 - \Rightarrow ME+PS-Merging of QCD and QED emissions

Outlook

- ${\scriptstyle \circ}$ Current version of ${\rm Sherp}{}_{\rm A}$ already contains QCD merging
- ${\scriptstyle \odot}$ Next version of ${\rm Sherp}{\rm A}$ adds implementation of QED
- Long term goal: Multi-jet merging with NLO matrix elements

COMIX — Recursive matrix elements

- Based on colour-dressed Berends-Giele recursion relations
- Designed to cope with large number of external legs
- Phase space also done recursively

Example: Diphoton production at LHC (MC4LHC workshop)

σ [pb]	Number of jets							
$\gamma\gamma$ + jets	0	1	2	3	4	5	6	
Comix	45.64(5)	25.23(6)	18.57(6)	9.64(4)	4.65(2)	2.07(2)	0.88(3)	
AMEGIC	45.66(3)	25.41(6)	18.81(7)	9.82(3)				

Backup Slides

Parton separation criterion

Reminder

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

• $Q_{\rm cut}$ has to regularise QCD radiation MEs (like a jet resolution)

Otherwise completely arbitrary until now

$$Q_{ij}^2 = 2 p_i p_j \min_{k \neq i,j} \frac{2}{C_{i,j}^k + C_{j,i}^k}$$

Final state partons $(ij) \rightarrow i, j$

Initial state parton
$$a \rightarrow (aj) j$$

$$C_{i,j}^{k} = \begin{cases} \frac{p_{i}p_{k}}{(p_{i}+p_{k})p_{j}} - \frac{m_{i}^{2}}{2p_{i}p_{j}} & \text{if } j = g \\ 1 & \text{else} \end{cases} \qquad \qquad C_{a,j}^{k} = C_{(aj),j}^{k} \\ \text{with } p_{aj} = p_{a} - p_{j} \end{cases}$$

 ${\scriptstyle \odot}$ The minimum is over all possible colour partners k of parton (ij)

• Identifies regions of soft $(E_g
ightarrow 0)$ and/or (quasi-)collinear ($pprox k_\perp^2
ightarrow 0)$ enhancements

• Similar to jet resolution (e.g. Durham in e^+e^- case), but with flavour information