Hard photon production and ME+PS merging Based on arXiv:0912.3501 [hep-ph]

Frank Siegert ¹

Institute for Particle Physics Phenomenology, Durham University; Department of Physics & Astronomy, University College London

14 January 2010, CERN

¹In collaboration with Stefan Höche & Steffen Schumann

Why look at photon production?

Jet energy calibration

- Calibrate calorimeter response to jets
- Photons in detector well understood
- \Rightarrow Use conservation of p_{\perp} in "clean" events with one jet and one photon
 - ullet Due to statistics useful mainly at low- p_{\perp}

Background to new physics

- $h \rightarrow \gamma \gamma$ (+ jets)
- Many BSM models produce final state photons

Anomalous gauge couplings

- Probe anomalous structure of triple-gauge couplings
- Especially production of high p_{\perp} photons interesting

"Direct" component – Fixed-order calculations

- γ +jet available at NLO (JetPhox) Phys. Rev. D73 (2006), 094007
- $\gamma\gamma$ available at NLO (DiPhox) Eur. Phys. J. C16 (2000), 311330
- NLO for $\gamma\gamma+{\rm jet}$ JHEP 04 (2003), 059
- Loop-induced $gg \to \gamma \gamma g$ Phys. Lett. B460 (1999), 184188

"Fragmentation" component – Photon-quark collinear singularities

- Singularities factorised off ME
- ullet Resummed to all orders in $lpha_s$
- ullet \Rightarrow Photon fragmentation function $D_{a,a}^{\gamma}(z,Q^2)$ Phys. Lett. B79 (1978), 83
- Relevant even if isolation criteria applied to photons (→ next slide)

"Non-prompt" component: Photons from $\pi^0 \to \gamma \gamma$, $\eta \to \gamma \gamma$, ...

• Can be \approx separated from prompt photons experimentally \Rightarrow Not considered in the following

Alternative approach: Parton-shower Monte Carlo

Monte-Carlo event generation

PERTURBATIVE PHYSICS

- Initial state parton shower^(*)
- Signal process*
- Final state parton shower*
- Underlying event

Soft Physics

- Hadronisation
- Hadron decays

*Prompt photon production:

- I O matrix elements
 - \Rightarrow "direct" component
- Interleaved parton shower for QCD⊕QED evolution
 - \Rightarrow Models $D_{q,q}^{\gamma}(z,Q^2)$

Interleaved parton shower for QCD⊕QED evolution

CSSHOWER++ — Parton shower based on dipole subtraction

Probability for no emission between two scales

$$\Delta_a(Q_0^2, Q^2) = \exp \left\{ -\int_{Q_0^2}^{Q^2} \frac{dt}{t} \int_{z_-}^{z_+} dz \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(z, t) \right\}$$

- Ordering variable $t \equiv k_{\perp}^2$
- ullet Kernels ${\cal K}$ based on Catani-Seymour subtraction terms
 - Projection onto leading term in $1/N_C$
 - Spin averaged
 - ⇒ Shower algorithm based on colour-connected emitter-spectator dipoles

$$\mathcal{K}^{\rm QCD}_{(ij)i}(z,\mathbf{k}_{\perp}^2) \,=\, \frac{\alpha_s(\mathbf{k}_{\perp}^2)}{2\pi} \; J(\mathbf{k}_{\perp}^2,z) \; \sum_k \langle \mathbf{V}^{\rm QCD}_{(ij)i,k}(\mathbf{k}_{\perp}^2,z) \rangle \quad \text{with} \quad z \,=\, \frac{p_i p_k}{(p_i+p_j)p_k} \;$$

Interleaved parton shower for QCD+QED evolution

Modifications for QED

- No interference between QCD and QED at NLO
 - ⇒ Emission probabilities factorise trivially

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{(\mathbf{QCD})}(Q_0^2, Q^2)\Delta_a^{(\mathbf{QED})}(Q_0^2, Q^2)$$

ullet Implemented by adding splitting functions for $qq\gamma$ vertex

$$\mathcal{K}_{(ij)i}^{\mathbf{QED}}(z,\mathbf{k}_{\perp}^{2}) = \frac{\alpha(\mathbf{k}_{\perp}^{2})}{2\pi} J(\mathbf{k}_{\perp}^{2},z) \sum_{k} \langle \mathbf{V}_{(ij)i,k}^{\mathbf{QED}}(\mathbf{k}_{\perp}^{2},z) \rangle$$

- ullet Difference to large N_C QCD: Not exactly one colour partner for dipole
- Neglects (negative) interference from legs with same-sign charges
- Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)
- Does this actually work? Let's look at some data ...

Fragmentation function at LEP

ALEPH: Z. Phys. C69 (1996), 365378

Fragmentation function at LEP

ALEPH: Z. Phys. C69 (1996), 365378

Recap: Merging algorithm

Main idea

Phase space slicing for extra QCD radiation:

- Soft/collinear emissions from parton shower
- Hard emissions from matrix element

More formally

Effectively different splitting kernels K for hard vs. soft/collinear radiation

$$\mathcal{K}_{ab}^{\mathrm{PS}}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}_{ab}^{\mathrm{ME}}(z,t) = \; \mathcal{K}_{ab}(z,t) \; \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- ullet Boundary determined by value of $Q_{
 m cut}$
- ullet $Q_{
 m cut}$ has to regularise QCD radiation MEs (like a jet resolution), otherwise completely arbitrary until now

Evolution factorises

$$\Delta_a(\mu^2, t) = \Delta_a^{PS}(\mu^2, t') \, \Delta_a^{ME}(\mu^2, t')$$

- ⇒Independent evolution in both regimes
- ⇒If careful: Possible to correct hard jets without spoiling resummation features

Photons in Merging

The good news

Nothing changes!

- Add QED radiation matrix elements
- Add QED radiation in shower
- Rest stays the same, including rejection

Completely democratic treatment of photons and partons

Separation criterion

- ullet In principle, $Q_{
 m cut}$ or even the form of Q_{ij} , can be chosen separately for QCD and QED
- Might be useful for analyses requiring isolated photons
 - \Rightarrow Would allow to produce photons in analysis region dominantly by matrix-element
- \bullet E.g. isolation in cone with radius D and minimal p_{\perp} for photons
 - $\Rightarrow {\rm could~use}~Q_{ij}^2 = \min(p_{\perp,i}^2,p_{\perp,j}^2) \frac{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}{D^2} ~{\rm (like}~k_\perp ~{\rm jet~algorithm)}$

Results for diphoton production at Tevatron

CDF: Phys. Rev. Lett. 95 (2005), 022003

Results for diphoton production at Tevatron

Conclusions

Conclusions

- Photon production processes play key role in collider experiments
- Monte-Carlo parton showers useful tool for collider physics
- Natural incorporation of QED splittings in parton shower
- Useful to supplement PS with higher order tree level ME
- Democratic treatment of photons and partons
 - \Rightarrow ME+PS-Merging of QCD and QED emissions
- Improved agreement with Tevatron measurements

Outlook

- Current version of SHERPA already contains QCD merging
- Next version of Sherpa adds implementation of QED
- Long term goal: Multi-jet merging with NLO matrix elements