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Why look at photon production?

Jet energy calibration
¢ Calibrate calorimeter response to jets
@ Photons in detector well understood
= Use conservation of p | in “clean” events with one jet and one photon

@ Due to statistics useful mainly at low-p |

Conclusions

Background to new physics

o h — vy (+ jets)
¢ Many BSM models produce final state photons

Anomalous gauge couplings
9@ Probe anomalous structure of triple-gauge couplings

9 Especially production of high p; photons interesting
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“Traditional” approach

“Direct” component —
Fixed-order calculations

@ ~y+jet available at NLO (JetPhox)

Phys. Rev. D73 (2006), 094007

@ v~ available at NLO (DiPhox)
Eur. Phys. J. C16 (2000), 311330

@ NLO for yy+jet

JHEP 04 (2003), 059

9 Loop-induced gg — vyyg
Phys. Lett. B460 (1999), 184188

ons in the Monte-Carlo Conclusions
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“Fragmentation” component —
Photon-quark collinear singularities

<

Singularities factorised off ME

<

Resummed to all orders in ag

<

= Photon fragmentation function
DY (2, Q2) Phys. Lett. B79 (1978), 83

@ Relevant even if isolation criteria applied
to photons (— later)

“Non-prompt” component: Photons from 7

@ Not considered in such calculations

O yy,n— 97, .

@ Sometimes = corrected for in experimental measurements
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Alternative approach: Parton-shower Monte Carlo

Monte-Carlo event generation

PERTURBATIVE PHYSICS
o Initial state parton shower(*)
@ Signal process™*
@ Final state parton shower*
@ Underlying event
SOFT PHYSICS
@ Hadronisation

9@ Hadron decays

*PROMPT PHOTON PRODUCTION:
@ LO matrix elements
= “direct” component

9 Interleaved parton shower for
QCD@®QED evolution
= Models D] ;(z, Q2)

Conclusions




Introduction Prompt photons in the Monte-Carlo
[e]e]e} @®0000000000

Why can this be split into different event phases?

Collinear factorisation of QCD radiation

@ Singularities from collinear emissions factorised off at a given scale

= Parton distribution functions (PDF) in initial state

) non-perturbative objects
= Fragmentation functions (FF) in final state } perturba )

Evolution equations

o Evolution of PDF/FF between different scales calculable perturbatively (DGLAP):

z 27r
b=q,g

Q" dt [V dzas
falw, @) = ol QB+ [ Ly LD S METACA
0 x

= Probablity at higher scale = lower scale + parton splitting

@ Differential version of that equation in pictures:

Dl (a/2Q%) Dl (a/2Q%)

g Dl =,Q%) h
dlog(Q*/u?) 4 QWqu(z) 27Tqu(z) %

Conclusions
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Parton-shower Monte Carlo

Solving this evolution equation: Parton shower algorithm

o Task: Dice splitting scale Q2 given a scale Q2 at which a parton was produced,

@ Use Sudakov-formalism to solve it (+ some tricks)
= Probability for no emission between two scales

2
o[58 0e  Daten

bqg

Aa(ng Q2)

o Example: Kernel Kyp(z,t) = Pap(2)

o Terminate evolution before entering hadronisation regime Q2 ~ 1GeV?

CSSHOWER-++ — Parton shower based on dipole subtraction

o Emissions ordered in ¢t = k2.

¢ Based on Catani-Seymour subtraction terms

@ Projection onto leading term in 1/N¢
@ Spin averaged

= Shower algorithm based on colour-connected emitter-spectator dipoles

K2) PiPk
I QCh z, k = LS( L , 2 VQCD K2 , 2 with z = — 2%
(2,k7) = e k%, 2) Z( k7, 2)) (i + 01 )08

(ig)i (i5), Ic

~

Conclusions
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Modifications of shower for interleaved QCD@®QED evolution

Modifications for QED

@ No interference between QCD and QED at NLO = Emission probabilities factorise
trivially

Aa(@3, Q%) = ARPN(@F, @A (@3, @)
9 Implemented by adding splitting functions for gqy vertex

Ky (k1) =

() I3, 2) STVEED (12 | 2))
- L) (ig)ik Lo
k

Difference to large No QCD: Not exactly one colour partner for dipole
Neglects (negative) interference from legs with same-sign charges
Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)

Does this actually work? Let's look at some data ...

¢ ¢ ¢ ¢

Conclusions
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Fragmentation function at LEP
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on function at LEP

Photon Fragmentation in 3-jet events with yeut = 0.01
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Relevance of fragmentation component

p, spectrum for leading photon

Prompt photons in the Monte-Carlo

D@ : Phys. Lett. B639 (2006), 151158
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Bringing higher-order matrix elements into the game JHEP 0905 (2009) 053 [arXiv:0903.1219 [hep-ph]]

Main idea of ME+PS merging
Phase space slicing for extra QCD radiation:
@ Hard emissions from matrix element

@ Soft/collinear emissions from parton shower

More formally

Effectively different splitting kernels KC for hard vs. soft/collinear radiation

Koy (2, t) = Kab(z,1) © [Qout — Qas(2,8)]  and KNP(2,8) = Kan(2,1) © [Qus(2,) — Qout

9 Boundary determined by value of Qcut

9 Qcut has to regularise QCD radiation MEs (like a jet resolution),
otherwise completely arbitrary until now

Evolution factorises
Aq(p?,t) = AFS (W, t)) AV (2, 1)

=>Independent evolution in both regimes
=If careful: Possible to correct hard jets without spoiling resummation features
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Recap: Merging algorithm

Outline of algorithm
QO Generate ME event above Qcut according to o and do \/
Q Translate ME event into shower language: Branching history \/
@ Reweight as(u?) — as(p? ) for each branching \/
Q Start shower evolution: \/

@ Emissions in PS regime? =- Keep
@ Emission in ME regime? =- Reject event

3

Evolution in PS regime preserved
Emissions above Qcut ME-corrected
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Photons in Merging

The good news

Algorithm works with the same concept!
@ Add QED radiation matrix elements
@ Add QED radiation in shower

@ Rest stays the same, including rejection

Completely democratic treatment of photons and partons

Separation criterion
@ In principle, Qcut or even the form of Q;;, can be chosen separately for QCD and QED

@ Might be useful for analyses requiring isolated photons
= Photons in analysis region dominantly produced by matrix-element

9 E.g. isolation in cone with radius D and minimal p | for photons

. AnZi+A¢Z, . .
= could use Q?j = mm(pi i,pi ].)W”Dig% (like kK, jet algorithm)
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Results for diphoton production at Tevatron

Invariant mass of diphoton pair

Prompt photons in the Monte-Carlo

CDF: Phys. Rev. Lett. 95 (2005), 022003

Transverse momentum of diphoton pair
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Results for diphoton production at Tevatron

[
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CDF: Phys. Rev. Lett. 95 (2005), 022003

Transverse momentum of diphoton pair
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Conclusions

Conclusions

<

Photon production processes play key role in collider experiments
Monte-Carlo parton showers useful tool for collider physics
Natural incorporation of QED splittings in parton shower

Supplementing PS with higher order tree level ME is advisable

¢ ¢ ¢ ¢

Democratic treatment of photons and partons
= ME+PS-Merging of QCD and QED emissions

Improved agreement with Tevatron measurements

<

Outlook
@ New D@ analysis this week, significantly higher statistics
@ SHERPA 1.2.1 (next week) contains QCD®QED merging (and much more)

@ Long term goal: Multi-jet merging with NLO matrix elements (but first for QCD ;-))

17 /17
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