Hard photon production and ME+PS merging Based on Phys. Rev. D 81, 034026 (2010)

Frank Siegert ¹

Institute for Particle Physics Phenomenology, Durham University; Department of Physics & Astronomy, University College London

5 March 2010, Durham

¹In collaboration with Stefan Höche & Steffen Schumann

Table of Contents

- Motivation
- Photon production mechanisms

Prompt photons in the Monte-Carlo

- Parton shower formalism
- QED in the parton shower
- Bringing higher-order matrix elements into the game

Introduction • • • •	Prompt photons in the Monte-Carlo
Why look at photon production?	

Jet energy calibration

- Calibrate calorimeter response to jets
- Photons in detector well understood
- $\Rightarrow\,$ Use conservation of p_{\perp} in "clean" events with one jet and one photon
 - ${\, \bullet \,}$ Due to statistics useful mainly at low- p_{\perp}

Background to new physics

- $h \rightarrow \gamma \gamma$ (+ jets)
- Many BSM models produce final state photons

Anomalous gauge couplings

- Probe anomalous structure of triple-gauge couplings
- \bullet Especially production of high p_{\perp} photons interesting

Prompt photons in the Monte-Carlo

- γ+jet available at NLO (JetPhox)
 Phys. Rev. D73 (2006), 094007
- γγ available at NLO (DiPhox)
 Eur. Phys. J. C16 (2000), 311330
- NLO for γγ+jet
 JHEP 04 (2003), 059
- Loop-induced $gg \rightarrow \gamma\gamma g$ Phys. Lett. B460 (1999), 184188

"Fragmentation" component – Photon-quark collinear singularities

- Singularities factorised off ME
- Resummed to all orders in α_s
- $\bullet \Rightarrow {\rm Photon} \mbox{ fragmentation function } D_{q,g}^{\gamma}(z,Q^2) \ {\rm Phys. \ Lett. \ B79 \ (1978), \ 83}$
- Relevant even if isolation criteria applied to photons (\rightarrow later)

"Non-prompt" component: Photons from $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, ...

- Not considered in such calculations
- ullet Sometimes pprox corrected for in experimental measurements

Alternative approach: Parton-shower Monte Carlo

Monte-Carlo event generation

Perturbative Physics

- Initial state parton shower^(*)
- Signal process*
- Final state parton shower*
- Underlying event

Soft Physics

- Hadronisation
- Hadron decays

*Prompt photon production:

- ▶ LO matrix elements
 ⇒ "direct" component
- Interleaved parton shower for QCD \oplus QED evolution \Rightarrow Models $D_{q,g}^{\gamma}(z, Q^2)$

Introd	uction
000	

Why can this be split into different event phases?

Collinear factorisation of QCD radiation

- Singularities from collinear emissions factorised off at a given scale
 - $\Rightarrow\,$ Parton distribution functions (PDF) in initial state
 - \Rightarrow Fragmentation functions (FF) in final state

non-perturbative objects

Evolution equations

Evolution of PDF/FF between different scales calculable perturbatively (DGLAP):

$$f_a(x,Q^2) = f_a(x,Q_0^2) + \int_{Q_0^2}^{Q^2} \frac{dt}{t} \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} \sum_{b=q,g} \hat{P}_{ab}(z) f_b(\frac{x}{z},t)$$

- \Rightarrow Probablity at higher scale = lower scale + parton splitting
- Differential version of that equation in pictures:

Introduction 000 Prompt photons in the Monte-Carlo

Conclusions

Parton-shower Monte Carlo

Solving this evolution equation: Parton shower algorithm

- Task: Dice splitting scale Q^2 given a scale Q_0^2 at which a parton was produced,
- ${\ensuremath{\, \bullet }}$ Use Sudakov-formalism to solve it (+ some tricks)
 - \Rightarrow Probability for no emission between two scales

$$\Delta_a(Q_0^2, Q^2) = \exp\left\{-\int_{Q_0^2}^{Q^2} \frac{\mathrm{d}t}{t} \int_{z_-}^{z_+} \mathrm{d}z \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(z, t)\right\}$$

- Example: Kernel $\mathcal{K}_{ab}(z,t) = \frac{\alpha_s}{2\pi} P_{ab}(z)$
- $\bullet\,$ Terminate evolution before entering hadronisation regime $Q^2 \approx 1 {\rm GeV}^2$

CSSHOWER++ — Parton shower based on dipole subtraction

- Emissions ordered in $t \equiv k_{\perp}^2$
- Based on Catani-Seymour subtraction terms
 - Projection onto leading term in $1/N_{C}$
 - Spin averaged
 - \Rightarrow Shower algorithm based on colour-connected emitter-spectator dipoles

$$\mathcal{K}^{\rm QCD}_{(ij)i}(z,\mathbf{k}_{\perp}^2) \;=\; \frac{\alpha_s(\mathbf{k}_{\perp}^2)}{2\pi}\; J(\mathbf{k}_{\perp}^2,z) \; \sum_k \langle \mathbf{V}^{\rm QCD}_{(ij)i,k}(\mathbf{k}_{\perp}^2,z) \rangle \quad \text{with} \quad z \;=\; \frac{p_i p_k}{(p_i+p_j)p_k}$$

Modifications of shower for interleaved $\mathsf{QCD}{\oplus}\mathsf{QED}$ evolution

Modifications for QED

 \bullet No interference between QCD and QED at NLO \Rightarrow Emission probabilities factorise trivially

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{(\mathbf{QCD})}(Q_0^2, Q^2) \Delta_a^{(\mathbf{QED})}(Q_0^2, Q^2)$$

• Implemented by adding splitting functions for $qq\gamma$ vertex

$$\mathcal{K}_{(ij)i}^{\mathbf{QED}}(z,\mathbf{k}_{\perp}^{2}) = \frac{\alpha(\mathbf{k}_{\perp}^{2})}{2\pi} J(\mathbf{k}_{\perp}^{2},z) \sum_{k} \langle \mathbf{V}_{(ij)i,k}^{\mathbf{QED}}(\mathbf{k}_{\perp}^{2},z) \rangle$$

- Difference to large N_C QCD: Not exactly one colour partner for dipole
- Neglects (negative) interference from legs with same-sign charges
- Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)
- Does this actually work? Let's look at some data ...

Fragmentation function at LEP

ALEPH: Z. Phys. C69 (1996), 365378

Fragmentation function at LEP

ALEPH: Z. Phys. C69 (1996), 365378

Relevance of fragmentation component

DØ : Phys. Lett. B639 (2006), 151158

Bringing higher-order matrix elements into the game

JHEP 0905 (2009) 053 [arXiv:0903.1219 [hep-ph]]

Main idea of ME+PS merging

Phase space slicing for extra QCD radiation:

- Hard emissions from matrix element
- Soft/collinear emissions from parton shower

More formally

Effectively different splitting kernels \mathcal{K} for hard vs. soft/collinear radiation

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- Boundary determined by value of Q_{cut}
- $Q_{\rm cut}$ has to regularise QCD radiation MEs (like a jet resolution), otherwise completely arbitrary until now

Evolution factorises

$$\Delta_a(\mu^2, t) = \Delta_a^{\rm PS}(\mu^2, t') \; \Delta_a^{\rm ME}(\mu^2, t')$$

⇒Independent evolution in both regimes

 \Rightarrow If careful: Possible to correct hard jets without spoiling resummation features

Introd	uction
000	

Outline of algorithm

 ${\bf \bigcirc}$ Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$ \checkmark

Outline of algorithm

- ${\bf Q}$ Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- **Q** Translate ME event into shower language: **Branching history**

Outline of algorithm

- **)** Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- **Q** Translate ME event into shower language: Branching history \checkmark
- ${\ensuremath{\textcircled{}}}$ Reweight $\alpha_s(\mu^2) \to \alpha_s(p_\perp^2)$ for each branching

Outline of algorithm

- ${\bf Q}$ Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history √
- Reweight $\alpha_s(\mu^2) \to \alpha_s(p_{\perp}^2)$ for each branching \checkmark

Start shower evolution:

• Emissions in PS regime?

Outline of algorithm

- ${\bf Q}$ Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history √
- Reweight $\alpha_s(\mu^2) \to \alpha_s(p_{\perp}^2)$ for each branching \checkmark

Start shower evolution:

- Emissions in PS regime? \Rightarrow Keep
- Emission in ME regime?

Outline of algorithm

- **③** Generate ME event above Q_{cut} according to σ and $d\sigma$ \checkmark
- **Q** Translate ME event into shower language: Branching history \checkmark
- Reweight $\alpha_s(\mu^2) \to \alpha_s(p_{\perp}^2)$ for each branching \checkmark
- Start shower evolution:
 - Emissions in PS regime? ⇒ Keep
 - Emission in ME regime? ⇒ Reject event

₩

Evolution in PS regime preserved Emissions above $Q_{\rm cut}$ ME-corrected

Photons in Merging

The good news

Algorithm works with the same concept!

- Add QED radiation matrix elements
- Add QED radiation in shower
- Rest stays the same, including rejection

Completely democratic treatment of photons and partons

Separation criterion

- In principle, $Q_{\rm cut}$ or even the form of Q_{ij} , can be chosen separately for QCD and QED
- Might be useful for analyses requiring isolated photons \Rightarrow Photons in analysis region dominantly produced by matrix-element
- E.g. isolation in cone with radius D and minimal p_{\perp} for photons \Rightarrow could use $Q_{ij}^2 = \min(p_{\perp,i}^2, p_{\perp,j}^2) \frac{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}{D^2}$ (like k_{\perp} jet algorithm)

Results for diphoton production at Tevatron

CDF: Phys. Rev. Lett. 95 (2005), 022003

 $15 \, / \, 17$

Results for diphoton production at Tevatron

CDF: Phys. Rev. Lett. 95 (2005), 022003

Transverse momentum of diphoton pair

Conclusions

Conclusions

- Photon production processes play key role in collider experiments
- Monte-Carlo parton showers useful tool for collider physics
- Natural incorporation of QED splittings in parton shower
- Supplementing PS with higher order tree level ME is advisable
- Democratic treatment of photons and partons \Rightarrow ME+PS-Merging of QCD and QED emissions
- Improved agreement with Tevatron measurements

Outlook

- New DØ analysis this week, significantly higher statistics
- SHERPA 1.2.1 (next week) contains QCD⊕QED merging (and much more)
- Long term goal: Multi-jet merging with NLO matrix elements (but first for QCD ;-))