Photon production in Sherpa Based on Phys. Rev. D 81, 034026 (2010)

Frank Siegert ¹

Institute for Particle Physics Phenomenology, Durham University; Department of Physics & Astronomy, University College London

15 April 2010, ATLAS Direct Photons meeting

ACnet

¹In collaboration with Stefan Höche & Steffen Schumann

"Traditional" approach

"Direct" component – Fixed-order calculations

- γ+jet available at NLO (JetPhox)
 Phys. Rev. D73 (2006), 094007
- $\gamma\gamma$ available at NLO (DiPhox)
 - Eur. Phys. J. C16 (2000), 311330
- NLO for γγ+jet
 JHEP 04 (2003), 059
- Loop-induced $gg \rightarrow \gamma \gamma g$ Phys. Lett. B460 (1999), 184188

"Fragmentation" component – Photon-quark collinear singularities

- Singularities factorised off ME
- Resummed to all orders in α_s
- $\bullet \Rightarrow$ Photon fragmentation function $D^{\gamma}_{q,g}(z,Q^2)$ Phys. Lett. B79 (1978), 83
- Relevant even if isolation criteria applied to photons (\rightarrow later)

"Non-prompt" component: Photons from $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, ...

- Not considered in such calculations
- ullet Sometimes pprox corrected for in experimental measurements

Alternative approach: Parton-shower Monte Carlo

Monte-Carlo event generation

Perturbative Physics

- Initial state parton shower^(*)
- Signal process*
- Final state parton shower*
- Underlying event

Soft Physics

- Hadronisation
- Hadron decays

*Prompt photon production:

- ▶ LO matrix elements
 ⇒ "direct" component
- Interleaved parton shower for $QCD \oplus QED$ evolution \Rightarrow Models $D_{q,g}^{\gamma}(z, Q^2)$

Why can this be split into different event phases?

Collinear factorisation of QCD radiation

- Singularities from collinear emissions factorised off at a given scale
 - \Rightarrow Parton distribution functions (PDF) in initial state
 - \Rightarrow Fragmentation functions (FF) in final state

non-perturbative objects

Evolution equations

• Evolution of PDF/FF between different scales calculable perturbatively (DGLAP):

$$f_a(x,Q^2) - f_a(x,Q_0^2) = \int_{Q_0^2}^{Q^2} \frac{dt}{t} \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} \sum_{b=q,g} \hat{P}_{ab}(z) f_b(\frac{x}{z},t)$$

- \Rightarrow Difference between scales given by parton splittings
- Differential version of that equation in pictures for FF D_q^h :

Parton-shower Monte Carlo

Unfolding the factorised emissions: Recursion

- **③** Start with parton produced at scale Q_0^2
- **Q** Dice scale Q^2 (and flavour) for next splitting according to the evolution equations
- **)** If $Q^2 > Q^2_{hadronisation} \approx 1 \text{GeV}^2$: Start at 1 again for the splitting products

Solving the evolution equation for step 2

• Use Sudakov-formalism to solve it (+ some tricks)

 \Rightarrow Probability for no emission between two scales ("Sudakov form factor")

$$\Delta_a(Q_0^2, Q^2) = \exp\left\{-\int_{Q_0^2}^{Q^2} \frac{\mathrm{d}t}{t} \int_{z_-}^{z_+} \mathrm{d}z \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(z, t)\right\}$$

• Example: Kernel $\mathcal{K}_{ab}(z,t) = \frac{\alpha_s}{2\pi} P_{ab}(z)$

CSSHOWER++ in SHERPA - Parton shower based on dipole subtraction

- Emissions ordered in $t \equiv k_{\perp}^2$
- Based on Catani-Seymour subtraction terms (colour-connected emitter-spectator dipoles)

$$\mathcal{K}^{\rm QCD}_{(ij)i}(z,\mathbf{k}_{\perp}^2) = \frac{\alpha_s(\mathbf{k}_{\perp}^2)}{2\pi} J(\mathbf{k}_{\perp}^2,z) \sum_k \langle \mathbf{V}^{\rm QCD}_{(ij)i,k}(\mathbf{k}_{\perp}^2,z) \rangle \quad \text{with} \quad z = \frac{p_i p_k}{(p_i + p_j)p_k}$$

Modifications of shower for interleaved $\mathsf{QCD}{\oplus}\mathsf{QED}$ evolution

Modifications for QED

 \bullet Want to interleave QCD \oplus QED emissions in factorised form

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{(\mathbf{QCD})}(Q_0^2, Q^2) \Delta_a^{(\mathbf{QED})}(Q_0^2, Q^2)$$

 \bullet Implemented by adding splitting functions for $qq\gamma$ vertex

$$\mathcal{K}_{(ij)i}^{\mathbf{QED}}(z,\mathbf{k}_{\perp}^{2}) = \frac{\alpha(\mathbf{k}_{\perp}^{2})}{2\pi} J(\mathbf{k}_{\perp}^{2},z) \sum_{k} \langle \mathbf{V}_{(ij)i,k}^{\mathbf{QED}}(\mathbf{k}_{\perp}^{2},z) \rangle$$

- Difference to large N_C QCD: Not exactly one colour partner for dipole
- Neglects (negative) interference from legs with same-sign charges
- Similarly implemented in several parton showers (Ariadne, Herwig, Pythia, Sherpa)
- Does this actually describe $D^{\gamma}_{q,g}(z,Q^2)$? Let's look at some data ...

Fragmentation function at LEP

ALEPH: Z. Phys. C69 (1996), 365378

Fragmentation function at LEP

ALEPH: Z. Phys. C69 (1996), 365378

Relevance of fragmentation component

DØ : Phys. Lett. B639 (2006), 151158

Inclusive photon p_{\perp} at Tevatron

• 23 GeV $< p_{\perp}^{\gamma} < 300$ GeV

•
$$E(\mathcal{R} = 0.4)/E_{\gamma} < 1.1$$

 \Rightarrow Hard isolated photons

Contributions from subprocesses

- $\bullet \ jj \to jj \text{ Dijets}$
- $jj \rightarrow \gamma j$ Photon + jet
- $jj \rightarrow \gamma \gamma$ Diphotons

 \Rightarrow Fragmentation component in dijets plays important role!

Introduction
0000

Correcting the shower with higher-order matrix elements

JHEP 0905 (2009) 053 [arXiv:0903.1219 [hep-ph]]

Main idea of ME+PS merging

Phase space slicing for extra QCD radiation:

- Hard emissions from matrix element
- Soft/collinear emissions from parton shower

More formally

Effectively different splitting kernels $\mathcal K$ for hard vs. soft/collinear radiation

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- Boundary determined by value of Q_{cut}
- $Q_{\rm cut}$ regularises real emission MEs (like a jet resolution)

Evolution factorises (again! this time in phase space)

$$\Delta_a(Q_0^2, Q^2) = \Delta_a^{\text{PS}}(Q_0^2, Q^2) \ \Delta_a^{\text{ME}}(Q_0^2, Q^2)$$

- ⇒ Independent evolution in both regimes
- \Rightarrow How to replace the $\Delta_a^{\text{ME}}(Q_0^2, Q^2)$ part with MEs now?

Outline of algorithm

• Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$

Outline of algorithm

- Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$
- **Q** Translate ME event into shower language: **Branching history**

Merging algorithm: Branching history

Translate ME event into shower language

Problem: ME only gives final state, no history **Solution:** Backward-clustering (running the shower reversed)

- Take N-particle final state
- Select last splitting according to shower probablities
- O Recombine partons using inverted shower kinematics \rightarrow N-1 particles + splitting variables for one node
- Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$
- Repeat 2 4 until core process

Most probable branching history a la shower.

Outline of algorithm

- Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$
- **Q** Translate ME event into shower language: Branching history \checkmark
- Start truncated shower evolution on each leg
 - If emission in PS regime \Rightarrow Keep This is the $\Delta_a^{PS}(t, t')$ part.

Outline of algorithm

- Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$
- **Q** Translate ME event into shower language: Branching history \checkmark
- Start truncated shower evolution on each leg
 - If emission in PS regime \Rightarrow Keep This is the $\Delta_a^{PS}(t, t')$ part.
 - Emission in ME regime? This is the $\Delta_a^{\rm ME}(t,t')$ part.

Introduction 0000 Conclusions

Merging algorithm: Emissions in ME regime

How to deal with the $\Delta_a^{\text{ME}}(t,t')$ part?

Relates to shower emissions above Q_{cut}

Has to be allowed in shower evolution, but:

Introduction 0000 Conclusions

Merging algorithm: Emissions in ME regime

How to deal with the $\Delta_a^{\rm ME}(t,t')$ part?

• Relates to shower emissions above $Q_{\rm cut}$

Has to be allowed in shower evolution, but:

Consequences

- \bullet Reduction of cross section $\sigma \to \sigma \cdot \Delta_a^{\rm ME}(t,t')$
- Compensated by higher order ME's

 \Rightarrow Leading order cross section stable

Outline of algorithm

• Choose matrix-element multiplicity N according to σ_n , σ_{n+1} , σ_{n+2} , ... and generate ME event according to $d\sigma_N$

♥ Translate ME event into shower language: Branching history √

 \bigcirc Start truncated shower evolution on each leg \checkmark

- If emission in PS regime \Rightarrow Keep This is the $\Delta_a^{PS}(t, t')$ part.
- Emission in ME regime? \Rightarrow Reject event This is the $\Delta_a^{\text{ME}}(t, t')$ part.

₩

Evolution in PS regime preserved Emissions above Q_{cut} ME-corrected

Photons in Merging

QCD⊕QED

Algorithm works with the same concept!

- Add QED radiation matrix elements
- Add QED radiation in shower
- Rest stays the same, including rejection

Completely democratic treatment of photons and partons

Separation criterion

- In principle, $Q_{\rm cut}$ or even the form of Q_{ij} , can be chosen separately for QCD and QED
- Might be useful for analyses requiring isolated photons \Rightarrow Photons in analysis region dominantly produced by matrix-element
- E.g. isolation in cone with radius D and minimal p_{\perp} for photons \Rightarrow could use $Q_{ij}^2 = \min(p_{\perp,i}^2, p_{\perp,j}^2) \frac{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}{D^2}$ (like k_{\perp} jet algorithm)

Introduction	n
0000	

Prompt photons in the Monte-Carlo

Results for diphoton production at Tevatron

Introduction 0000 Prompt photons in the Monte-Carlo

Conclusions

Results for diphoton production at Tevatron

Results for diphoton production at Tevatron

Results for diphoton production at Tevatron

Conclusions

Conclusions

- Photon production processes play key role in collider experiments
- Monte-Carlo parton showers useful tool for collider physics
- Natural incorporation of QED splittings in parton shower
- Supplementing PS with higher order tree level ME is advisable
- Democratic treatment of photons and partons \Rightarrow ME+PS-Merging of QCD and QED emissions
- Improved agreement with Tevatron measurements

Outlook

- Hopefully SHERPA 1.2.1 will be available in ATLAS soon (\rightarrow MC meeting on Monday)
- Still trying to optimize event generation efficiency for photon production
- Long term goal: Multi-jet merging with NLO matrix elements (but first for QCD ;-))