HERPA as Production generator

SHERPA as Decay generator

SHERPA: physics and technical aspects

Frank Siegert ¹

Institute for Particle Physics Phenomenology, Durham University; Department of Physics & Astronomy, University College London

2 June 2010, LHCb Gauss Workshop

¹For the SHERPA collaboration: J. Archibald, T. Gleisberg, S. Höche, H. Hoeth, F. Krauss, M. Schönherr, S. Schumann, FS, J. Winter, K. Zapp

SHERPA as Production generator

 $\begin{array}{l} \mathrm{SHERPA} \text{ as Decay generator} \\ \mathrm{OOOOOOOOOOOOOOO} \end{array}$

Conclusions + Outlook

Table of Contents

- 1 The SHERPA framework
 - Basics
 - Input format
 - Output formats and interfaces
- 2 SHERPA as Production generator
 - Inclusive QCD events
 - Future: Improved model for inclusive QCD
 - Hadronisation
- 3 SHERPA as Decay generator
 - \bullet Hadron and τ decay module ${\rm HADRONS}{++}$
 - Form factors and decay channel settings
 - Inclusive observables
 - Spin correlations
 - Neutral meson mixing
 - Higher order QED corrections
 - Conclusions + Outlook

HERPA as Production generator

SHERPA as Decay generator

The SHERPA Monte-Carlo

- Full-featured multi-purpose event generator
- Current version: 1.2.1
- ${\scriptstyle \circ }$ Developed in C++ by ${\approx}10$ authors
- Modular in the different event phases

Disclaimer

This talk will focus solely on the LHCb-relevant features. I will not talk about some major features like ME+PS merging.

The	Sherpa	framework	
0.	000		

SHERPA as Decay generator

Feature summary

Matrix elements and parton showers

- k_{\perp} ordered shower based on Catani-Seymour dipoles JHEP 0803 (2008) 038
- High multiplicity matrix elements from two different automated generators:
 - COMIX JHEP 0812 (2008) 039
 - AMEGIC++ JHEP 0202 (2002) 044
- ME+PS merging for QCD (JHEP 0905 (2009) 053) and QED (Phys.Rev. D81 (2010) 034026) radiation
- Automated Catani-Seymour subtraction for QCD NLO calculations

Underlying Event

- Multiple parton interactions based on Phys. Rev. D36 (1987) 2019
- ${\circ}\,$ Minor modifications, e.g. for ME+PS merging ${}_{\text{hep-ph/0601012}}$

Hadronisation

- \odot Cluster fragmentation model $\rm AHADIC++$ Eur. Phys. J. C36 (2004) 381
- Extensive hadron decay module
- Higher order QED corrections for decays JHEP 0812 (2008) 018

The	Sherpa	framework
000	00	

SHERPA as Decay generator

Conclusions + Outlook

Input files

Example run card Run.dat for inclusive QCD events

```
(beam){
  BEAM_1 = 2212; BEAM_ENERGY_1 = 900;
  BEAM 2 = -2212; BEAM ENERGY 2 = 900;
}(beam)
(processes){
  Process 93 93 -> 93 93
  Order EW 0
  End process
}(processes)
(selector) {
  NJetFinder 2 2.45 0.0 1.0
}(selector)
(me) {
  ME_SIGNAL_GENERATOR = Comix
}(me)
(mi){
  MT HANDLER = Amisic
  SCALE_MIN = 2.45;
}(mi)
```

• Many examples provided in the distribution

• Comprehensive manual available

SHERPA as Production generator 00000000

Conclusions + Outlook

Collection of example setups in the distribution

- Tevatron_DiBoson
- Tevatron_QCD
- Tevatron_TopPair
- Tevatron_UE
- Tevatron_WJets
- Tevatron_ZJets
- LHC_4thGen
- LHC_AGC
- LHC_ADD
- LHC_SUSY
- LHC_SUSY
- LHC_TTH
- LHC_ZJets
- LEP91
- HERA_DIS
- PEPII_BaBar
- EGamma
- NLO_₩

HERPA as Production generator

SHERPA as Decay generator

Conclusions + Outlook

Output formats and interfaces

Output formats

- Internal event format similar to HepMC
- Translation into HepEvt and HepMC events provided

Interfaces available

- ${\circ}\,$ Interfaces to ${\rm SHERPA}$ in LHCb, CMS and ATLAS software
- Built-in interface to Rivet analysis library
- Internal analysis module for simple analyses

SHERPA as Production generator

SHERPA as Decay generator

Inclusive QCD events

How to produce inclusive QCD in SHERPA

- ${\color{black} \bullet 2} \rightarrow 2$ QCD matrix elements for primary scattering
- Cut p_{\perp} as soft as allowed
- Multiple parton interactions (secondary QCD $2 \rightarrow 2$ scatterings)
- MPI tuned to UE data from Tevatron and extrapolated to LHC energies

Underlying Event model (multiple parton interactions)

- Based on Sjostrand/van Zijl model Phys. Rev. D36 (1987) 2019
- Parton showers attached to secondary interactions
- With ME+PS: Starting scale for evolution $\mu_{\rm MI}$ chosen according to p_{\perp} of QCD partons in $k_{\perp}\text{-clustered core process}$

SHERPA as Production generator

Conclusions + Outlook

Results for UE data Phys.Rev.D65:092002,2002

SHERPA as Production generator

SHERPA as Decay generator

Conclusions + Outlook

Future: Improved model for inclusive QCD F. Krauss, K. Zapp

What is missing for minimum bias simulation?

- elastic scattering
- single diffraction
- double diffraction

Full minimum bias in SHERPA

- most complete view of physics intimate connection to underlying event
- need model embedding hard and semi-hard QCD, diffraction, elastic scattering
- convincing model for inclusive properties by Khoze-Martin-Ryskin
- started implementing model inspired by KMR in SHERPA
- o goal: complete description of QCD

Disclaimer

Not released with SHERPA yet, still in development!

Improved model for inclusive QCD in SHERPA F. Krauss, K. Zapp

Optical theorem

• relates total cross section σ_{tot} to elastic forward scattering amplitude $\mathcal{A}(s,t)$ through

$$\sigma_{\rm tot}(s) = \frac{1}{s} \, \operatorname{Im}[\mathcal{A}(s, t=0)]$$

- rewrite $\mathcal{A}(s,t)$ as A(s,b) in impact parameter space
- in eikonal model elastic amplitude given by sum of all Regge exchange diagrams:

$$A(s,b) = i\left(1 - e^{-\Omega(s,b)/2}\right)$$

o pictorially:

 $\mathsf{Im}A(s,b) = \sum_{n=1}^{\infty}$ $\Omega(s, t)$ + 🙏 + • leading contribution: Pomeron exchange + rescattering : o pomeron in pQCD represented by gluon ladder diagrams \Rightarrow Cut elastic amplitude and identify effective gluons with real gluons for inclusive QCD production

SHERPA as Production generator

SHERPA as Decay generator

New MinBias model: First preliminary results Phys.Rev.D65:092002,2002

SHERPA as Production generator

SHERPA as Decay generator

New MinBias model: First preliminary results Phys.Rev.D65:092002,2002

The	Sherpa	framework
000	000	

SHERPA as Decay generator

New MinBias model: First preliminary results

Phys.Rev.D65:072005,2002

Phys.Rev.D79:112005,2009

The	Sherpa	framework
000	000	

SHERPA as Decay generator

Conclusions + Outlook

Hadronisation

Default model: AHADIC++

- "Cluster fragmentation"
- Formation of colourless clusters
- Dynamic cluster-hadron boundary
 ⇒ cluster decay or transition
- Extensively tuned to LEP data

Alternative option: Lund interface

- String fragmentation"
- Built-in interface to Pythia 6.4.18
- Orude tune to LEP data
- By default not compiled
- Can not be combined with SHERPA's hadron decays at the moment (probably not so important for Production tool in LHCb)

SHERPA as Production generator 00000000

SHERPA as Decay generator

Conclusions + Outlook

Hadron and τ decay module HADRONS++

Highlights

- Branching ratios fixed e.g. from PDG in decay table files
- Decay kinematics according to amplitudes \mathcal{M} (with form factors)

$$d\Gamma(P \to p_1 \dots p_n) = \underbrace{\frac{1}{2P}}_{\text{flux factor}} \cdot \underbrace{|\mathcal{M}(P, p_1 \dots p_n)|^2}_{\text{squared matrix element}} \cdot \underbrace{\text{dLiPS}}_{\text{Lorentz invariant phase space}}$$

- Kinematical corrections for spin correlations
- Treatment of neutral meson mixing and related CP violation

Other features

- Mass smearing of unstable resonances
- Partonic decays for incomplete decay tables
- Alias functionality to define signal particles/decays

Status

- $\,$ Decay tables for \approx 400 hadrons
- $_{
 m \circ}\, pprox 2500$ decay channels
- $_{\odot}\,\approx\,400$ decay channels with dedicated form factors

HERPA as Production generator

SHERPA as Decay generator

Conclusions + Outlook

Decay data example

Decayers: HadronDecays.dat

```
[...]
# Beautiful Pseudoscalars
511 -> B/ Decays.dat;
521 -> B+/ Decays.dat;
531 -> Bs/ Decays.dat;
541 -> Bc+/ Decays.dat;
[...]
```

- Contains list of all particles and their decay table files
- Similarly a file listing alias particles and their decay tables may exist
 - \Rightarrow Signal decay chains can be specified and used in the LHCb interface

Decay table B+/Decays.dat

```
## (sem;)leptonic decays
# b -> cl nu
{-423,12,-11} | 0.065(0.005)[PDG] | B+_Dstar2007bnu_ee+.dat;
[...]
# b -> u l nu (scalar)
{111,12,-11} | 7.4e-05(1.1e-05)[PDG] | B+_pinu_ee+.dat;
[...]
```

Contains all decay channels for that decayer with:

- branching ratio, its error and reference
- the file containing details about the decay channel

SHERPA as Production generator 00000000 SHERPA as Decay generator

Conclusions + Outlook

Form factors and other decay channel settings

Decay channel file specifies:

- Amplitude for decay channel
- Settings for amplitude, like form factors
- Phase space integrator
- Integration result (width, maximum), automatically generated but doesn't overwrite BR

Amplitudes

- very slim structure to quickly implement matrix elements
- ability to re-use existing currents for different matrix elements, e. g.

HERPA as Production generator

SHERPA as Decay generator

Conclusions + Outlook

Semileptonic meson decays

Parametrisation

- Leptonic current via helicity amplitudes
- Hadronic current via form factor decomposition

HERPA as Production generator

SHERPA as Decay generator

Conclusions + Outlook

au decays

Parametrisation

- Complicated resonance structures in hadronic currents
- Different form factor models available:
 - Kühn-Santamaria Z. Phys. C48 (1990) 445
 - Resonance chiral theory, e.g. Nucl. Phys. B321 (1989) 311
 - Novosibirsk Comput.Phys.Commun. 146 (2002) 139-153

Example: $au^- o \pi^- \pi^0 u_ au$ compared to CLEO data Phys. Rev. D61 (2000) 112002

The	Sherpa	framework
00	000	

SHERPA as Decay generator

Hadronic decays

The	Sherpa	framework
00	000	

SHERPA as Decay generator

Rare decays

Example: $B \to K^* l^+ l^-$

- flavour-changing neutral current in Standard Model only in higher orders
- highly suppressed SM amplitude (four vertices, one of them V_{ts} !)
- \Rightarrow high sensitivity to BSM physics
- Matrix element parametrisation: Ali, Ball, Handoko, Hiller (arXiv:hep-ph/9910221)

The	Sherpa	framework
00	000	

SHERPA as Decay generator

Inclusive observables

Necessary "ingredients"

- complete decay tables for all particles
- $\, \bullet \,$ if exclusive channels don't add up to 100 %:
 - partonic decays
 - + shower (e. g. CSSHOWER++)
 - + fragmentation (e. g. AHADIC++)
 - \implies need properly tuned fragmentation (multiplicities)
- correct matrix elements for characteristic channels
 - (e. g. semileptonic channels \implies impact on electron spectrum)

Comparison with EvtGen

- $\,\circ\,$ looking at stable hadrons and leptons after a fully inclusive B^+ decay
- typical observables: multiplicities, energy spectra

SHERPA as Production generator

SHERPA as Decay generator

Inclusive observables for $B^+\ {\rm decay}$

π^{\pm} multiplicity

 K^{\pm} multiplicity

SHERPA as Production generator

SHERPA as Decay generator

Inclusive observables for $B^+\ {\rm decay}$

Electron multiplicity

Electron energy spectrum

SHERPA as Production generator

SHERPA as Decay generator

Spin correlations

What are spin correlations about?

- Decay cascade \Leftrightarrow cutting propagators into polarisation vectors/spinors/...
- Correlation between polarisation in "left" ME and "right" ME not accounted for if they are done independently ⇒ correction applied by spin correlation algorithm

Angle between τ decay planes (Analytical results: Z.Phys.C64:21-30,1994)

SHERPA as Production generator 00000000

SHERPA as Decay generator

Conclusions + Outlook

Neutral meson mixing

Explicit mixing probabilities

$$\begin{split} P(B^0 \to \bar{B}^0) &= \left| \left\langle \bar{B}^0 \right| \left. B^0_{\rm phys}(t) \right\rangle \right|^2 \sim \left| \frac{q}{p} \right|^2 \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right) \\ P(\bar{B}^0 \to B^0) &= \left| \left\langle B^0 \right| \left. \bar{B}^0_{\rm phys}(t) \right\rangle \right|^2 \sim \left| \frac{p}{q} \right|^2 \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right) \end{split}$$

HERPA as Production generator

SHERPA as Decay generator

CP violation in the interference

HERPA as Production generator

SHERPA as Decay generator

QED corrections in decays

JHEP 0812 (2008) 018

Module PHOTONS++

- Sums all contributions of soft photon radiation (real and virtual) using the Yennie-Frautschi-Suura-Formalism (YFS)
 - \Rightarrow exact as $k \rightarrow 0$, perturbative series for hard emission effects
- $\circ\,$ Hard emission effects up to $\mathcal{O}(\alpha)$ incorporated generally via approximated matrix elements in the quasi-collinear limit
- Important cases with $\mathcal{O}(\alpha)$ real and/or virtual exact matrix elements $V \to FF, V \to SS, S \to FF, S \to SS, \tau \to \ell \nu_{\ell} \nu_{\tau}$
- $\circ\,$ ME corrections for radiative semi-leptonic meson decays (1 \rightarrow 3 + $\gamma)$ under way (form factor model)
- ${\scriptstyle \circ }$ Applied to all hadron and τ decays
- No limitation on final state complexity

SHERPA as Production generator 00000000 SHERPA as Decay generator

Leptonic hadron decays: $J/\psi \rightarrow \ell \bar{\ell}$

total radiated energy in the J/ψ rest frame

angular spectrum in the rest frame of the dipole

soft only (dotted)

- collinear approximated ME (dashed)
- exact ME (solid)

Energy spectrum and angular radiation patterns for fixed kinematical configurations.

HERPA as Production generator

Conclusions + Outlook

Conclusions

- SHERPA is a full-featured multi-purpose event generator
- Useful as decay tool for LHCb due to wealth of hadron decay features
- Also interfaced as production tool for inclusive QCD events and B signal events
- No full minimum bias description yet
- I have skipped all features related to hard scattering processes in this talk

Outlook

- Implementation of new KMR-based model for full minimum bias simulation
- ${\scriptstyle \circ}$ More work on hadron decay features relevant for LHCb, e.g. CP violation in signal decays
- A lot more testing of Sherpa within LHCb for different combinations of Production/Decay tool
 - \rightarrow Julian+Tobias next

If you have any problems/requests, please feed them into our bug tracker!
 http://sherpa-mc.de
 info@sherpa-mc.de