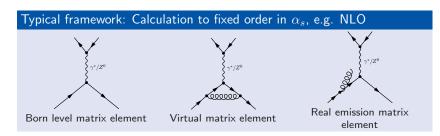
NLO matrix elements and parton showers

Seminar Heidelberg, 4 Nov 2010

Frank Siegert


Albert-Ludwigs-Universität Freiburg

Based on

- arXiv:1009.1127 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1008.5399 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- ► arXiv:0912.3501 (Stefan Höche, Steffen Schumann, FS)
- ► arXiv:0903.1219 (Stefan Höche, Frank Krauss, Steffen Schumann, FS)

LHC phenomenology

- Higgs/BSM signals with heavy particles decaying into high multiplicity final states
- ▶ Backgrounds from simple SM processes with many additional jets
- ⇒ Need good understanding of higher order QCD corrections to SM processes

This talk

Improving approximate resummation of this series with exact fixed order corrections

Table of Contents

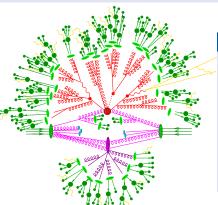
Parton showers

Tree-level improvements

ME+PS formalism Results

NLO accuracy

The POWHEG method Results


Combining it all

The MENLOPS algorithm Results

Monte-Carlo event generation

What are event generators?

- Simulation programs for collider physics
- ▶ Modelling of the complete hadronic final state
- ⇒ Work horses for theoretical interpretation of measurements

Basic principle

- Factorisation into event phases
- Perturbatively calculable:
 - Hard scattering
 - Initial state parton shower
 - Final state parton shower
 - (Multiple parton interactions)
- ► Non-perturbative modelling:
 - (Multiple parton interactions)
 - Hadronisation
 - ► Hadron decays

Central ingredient: Parton showers

Motivation

- ► Higher-order QCD corrections to hard scattering: Infrared divergences from real/virtual cancel for inclusive quantities (→ KLN)
- ▶ But: Resolution through confinement of partons at $\mu_{\rm had} \approx 1$ GeV (hadronisation) \Rightarrow Not inclusive
- Finite remainders of infrared singularities: logarithms of ratio $\mu_F^2/\mu_{\rm had}^2$ with each $\mathcal{O}(\alpha_s)$
- Such large logarithms have to be resummed to all orders

Parton shower:

- ► Higher orders represented by parton branchings
- \Rightarrow Evolution of parton ensemble between μ_F^2 and $\mu_{\rm had}^2$

Question

How to get the (no-)branching probabilities to describe this evolution between different scales?

Construction of a parton shower (I/II)

Factorisation of QCD emissions

Universal factorisation of QCD real emission ME in soft/collinear limit:

$$\mathcal{R} \to \mathcal{B} imes \left(\sum_{ij,k \in \mathsf{partons}} \frac{1}{2p_i p_j} \, 8\pi \alpha_s \, \mathcal{K}_{ij,k}(p_i,p_j,p_k) \right)$$

- ▶ Born matrix element
- ightharpoonup Sum over subterms ij,k of the factorisation, e.g. parton lines (DGLAP) potentially with spectator k
- $lack rac{1}{2p_ip_j}$ from massless propagator Evolution variable of shower $t\sim 2p_ip_j$ (e.g. k_\perp , angle, . . .)
- ▶ $\mathcal{K}_{ij,k}$ splitting kernel for branching $(ij) + k \rightarrow i + j + k$ Specific form depends on scheme of the factorisation above, e.g.:
 - ► Altarelli-Parisi splitting functions
 - Dipole terms from Catani-Seymour subtraction
 - ► Antenna functions
 - **.**..

Differential (no-)branching probability

- ▶ Radiative phase space: $d\Phi^{ij,k}_{\rm rad} = \frac{1}{16\pi^2} dt dz \frac{d\phi}{2\pi}$
- ► Combined with radiative part of the factorised ME (Jacobian/symmetry factor/PDFs ignored)

$$\mathrm{d}\sigma_{\mathrm{rad}}^{ij,k} = \frac{\mathrm{d}t}{t}\,\mathrm{d}z\,\frac{\mathrm{d}\phi}{2\pi}\,\frac{\alpha_s}{2\pi}\,\,\mathcal{K}_{ij,k} \qquad \text{Differential branching probability}$$

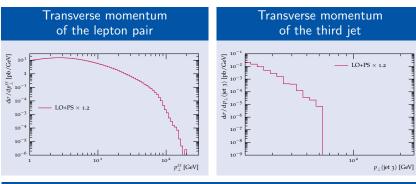
No-branching probability

Above: Differential probability for one branching to (not) happen in interval $\mathrm{d}t$ Goal: Total no-branching probability between scale t' and t''

- ▶ Integrate over z, ϕ , and t from t' to t''
- ► Assume multiple independent emissions (Poisson statistics) ⇒ Exponentiation

subterm:
$$\Delta_{ij,k}(t',t'') = \exp\left\{-\sum_{f_i=q,g} \int_{t'}^{t''} \frac{\mathrm{d}t}{t} \int_{z_-}^{z_+} \mathrm{d}z \int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \frac{\alpha_s}{2\pi} \, \mathcal{K}_{ij,k}(z,t)\right\}$$
 event:
$$\Delta(t',t'') = \prod \Delta_{ij,k}(t',t'')$$

Master formula


Cross section up to first emission in a parton shower

$$\sigma = \int \mathrm{d}\Phi_B \, \mathrm{B} \Bigg[\underbrace{\Delta(t_0,\mu^2)}_{\text{unresolved}} \,\, + \, \underbrace{\sum_{ij,k} \frac{1}{16\pi^2} \int\limits_{t_0}^{\mu^2} \mathrm{d}t \int\limits_{z_-}^{z_+} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta(t,\mu^2) \frac{8\pi \, \alpha_s}{2p_i p_j} \, \mathcal{K}_{ij,k}(z,t)} \, \Bigg] \\ \frac{1}{16\pi^2} \underbrace{\int\limits_{t_0}^{2\pi} \mathrm{d}t \int\limits_{z_-}^{z_+} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta(t,\mu^2) \frac{8\pi \, \alpha_s}{2p_i p_j} \, \mathcal{K}_{ij,k}(z,t)} \Bigg] \\ \frac{1}{16\pi^2} \underbrace{\int\limits_{t_0}^{2\pi} \mathrm{d}t \int\limits_{z_-}^{2\pi} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta(t,\mu^2) \frac{8\pi \, \alpha_s}{2p_i p_j} \, \mathcal{K}_{ij,k}(z,t)} \Bigg] \\ \frac{1}{16\pi^2} \underbrace{\int\limits_{t_0}^{2\pi} \mathrm{d}z \int\limits_{z_-}^{2\pi} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta(t,\mu^2) \frac{8\pi \, \alpha_s}{2p_i p_j} \, \mathcal{K}_{ij,k}(z,t)} \Bigg] \\ \frac{1}{16\pi^2} \underbrace{\int\limits_{t_0}^{2\pi} \mathrm{d}z \int\limits_{z_-}^{2\pi} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta(t,\mu^2) \frac{8\pi \, \alpha_s}{2p_i p_j} \, \mathcal{K}_{ij,k}(z,t)} \Bigg] \\ \frac{1}{16\pi^2} \underbrace{\int\limits_{t_0}^{2\pi} \mathrm{d}z \int\limits_{z_-}^{2\pi} \mathrm{d}z \int\limits_{0}^{2\pi} \mathrm{d}z \int\limits_{0}$$

Features

- LO weight B for Born-like event
- Unitarity: Term in square brackets $[...] = 1 \Rightarrow LO$ cross section preserved
- "Unresolved" part: No emissions above parton shower cutoff t_0
- "Resolved" part: Emission between t_0 and factorisation scale μ^2
- Emission in parton shower approximation with $K_{ij,k}$

Canonical Example: Drell-Yan process $pp \to \ell\ell$

Conclusions

- $lackbox{} p_{\perp}^{\ell\ell}$ probes QCD emissions because of recoil
- lacktriangle Resummation avoids divergence of fixed order calculation for $p_{\perp}^{\ell\ell} o 0$
- ▶ Hard QCD emissions (leading to $p_{\perp}^{\ell\ell}>\mu_F^2\approx m_Z$) not well described (as we will see later)
- Factor K=1.2 to compare to NLO results later

Main idea of ME+PS merging

Phase space slicing for QCD radiation in shower evolution

- ▶ Hard emissions $Q_{ij,k}(z,t) > Q_{\text{cut}}$
 - Events rejected
 - lacktriangle Compensated by events starting from higher-order ME (regularised by Q_{cut})
 - \Rightarrow Splitting kernels replaced by exact real emission matrix elements

$$\frac{8\pi\alpha_s}{2p_ip_j}\mathcal{K}_{ij,k}(z,t) \quad \rightarrow \quad \frac{8\pi\alpha_s}{2p_ip_j}\,\mathcal{K}^{\mathrm{ME}}_{ij,k}(z,t) \; = \; \frac{\mathcal{R}_{ij,k}}{\mathcal{B}}$$

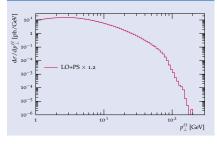
- ▶ Soft/collinear emissions $Q_{ij,k}(z,t) < Q_{\text{cut}}$
 - \Rightarrow Retained from parton shower $\mathcal{K}_{ij,k}(z,t) = \mathcal{K}_{ij,k}^{PS}(z,t)$

Note

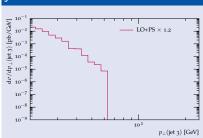
- ▶ Boundary determined by "jet criterion" $Q_{ij,k}$
 - ► Has to identify soft/collinear divergences in MEs, like jet algorithm
 - ▶ Otherwise arbitrary, but some choices better than others
- ▶ In both regions: No-branching probabilities still from shower

$$\Delta(t',t'') \rightarrow \Delta^{(PS)}(t',t'')$$

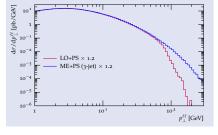
Cross section up to first emission in ME+PS


$$\sigma = \int \mathrm{d}\Phi_B \, \mathrm{B} \left[\underbrace{\Delta^{\mathrm{(PS)}}(t_0, \mu^2)}_{\text{unresolved}} \right. \\ \left. + \underbrace{\sum_{ij,k} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} \mathrm{d}t \int_{z_-}^{z_+} \mathrm{d}z \int_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta^{\mathrm{(PS)}}(t, \mu^2)}_{\text{odd}} \right. \\ \times \left. \left(\underbrace{\frac{8\pi \, \alpha_s}{2p_i p_j} \, \mathcal{K}_{ij,k}^{\mathrm{(PS)}}(z,t) \, \Theta(Q_{\mathrm{cut}} - Q_{ij,k})}_{\text{resolved, PS domain}} \right. \\ \left. + \underbrace{\underbrace{\frac{\mathrm{R}_{ij,k}}{\mathrm{B}} \, \Theta(Q_{ij,k} - Q_{\mathrm{cut}})}_{\text{resolved, ME domain}} \right) \right]$$

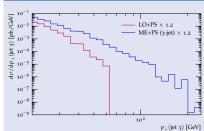
Features


- ▶ LO weight B for Born-like event
- ▶ Unitarity slightly violated due to mismatch of $\Delta^{(PS)}$ and R/B $[\ldots] \approx 1 \Rightarrow LO$ cross section only approximately preserved
- ▶ Unresolved emissions as in parton shower approach
- ▶ Resolved emissions now sliced into PS and ME domain
- ▶ Only for one emission here, but possible up to very high number of emissions

Canonical Example: Drell-Yan process $pp \to \ell\ell$



Transverse momentum of the third jet



Canonical Example: Drell-Yan process $pp o \ell\ell$

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Conclusions

- ► Multiple hard emissions properly accounted for
- ► Resummation preserved
- ▶ Inclusive rate still at LO \Rightarrow factor K = 1.2 necessary

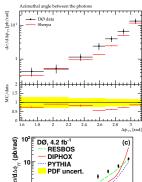
Results: Features and shortcomings

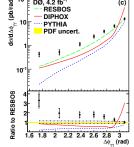
Example

Diphoton production at Tevatron

- ► Recently published by DØ Phys.Lett.B690:108-117,2010
- ▶ Isolated hard photons with:
 - $ightharpoonup E_{\perp}^{\gamma^1} > 21 \text{ GeV}$
 - $E_{\perp}^{\gamma^2} > 20 \text{ GeV}$
 - $|\eta_{\gamma}^{\perp}| < 0.9$
 - Isolation: $E_{\perp}(R=0.4)-E_{\perp}^{\gamma}<2.5~{\rm GeV}$
- ► Here: Azimuthal angle between the diphoton pair

ME+PS simulation using $SHERPA\ 1.2.2$ with QCD+QED interleaved shower and merging


Höche, Schumann, FS (2010)


Conclusions

Shapes described very well even for this non-trivial process/observable for both:

- ▶ Hard region, e.g. $\Delta\Phi_{\gamma\gamma} \to 0$
- ▶ Soft region, e.g. $\Delta\Phi_{\gamma\gamma} \to \pi$

Total cross section too low ⇒ Virtual MEs needed

The POWHEG method

Motivation

- ► Parton shower for resummation ✓
- ► ME+PS for correct hard radiation pattern √
- ▶ Inclusive rate still at LO in α_s ... can we do NLO + parton shower?
 - ► MC@NLO Frixione, Webber (2002)
 - POWHEG Nason (2004), Frixione, Nason, Oleari (2007) (used in the following)

Two issues to solve

- 1. Cross section at NLO accuracy in α_s
- 2. Radiation pattern of first emission according to real ME

Note

- ► Completely orthogonal to and independent of ME+PS merging
- ▶ Only possible for first emission, not for higher orders

Cross section at NLO accuracy in α_s

Reminder: Matrix elements contributing to NLO

- ▶ Born ME → automatic tree-level generators
- Virtual ME → dedicated codes, Binoth Les Houches interface
- ightharpoonup Real emission ME ightharpoonup automatic tree-level generators

Integrating over real emission phase space

- ▶ Problem: Cancellation of infrared divergences between virtual and real. Separate numerical integration (N and N+1 final states) not possible
- ► Solution: Subtraction procedure, e.g. Catani-Seymour or Frixione-Kunszt-Signer
 - Subtract universal divergent terms from real ME (S)
 - Integrate them analytically and add to virtual ME (I)
 - ⇒ Poles cancel
- Integration of real emission phase space explicitely or by Monte-Carlo sampling
- NLO weight for event with Born level kinematics

$$\overline{\mathbf{B}} = \mathbf{B} + \mathbf{V} + \mathbf{I} + \sum_{\{\widetilde{\imath}\widetilde{\jmath}, \widetilde{k}\}} \sum_{f_i = q, g} \int \mathrm{d}\Phi_{R|B}^{ij,k} \left[\mathbf{R}_{ij,k} - \mathbf{S}_{ij,k} \right]$$

Radiation pattern of first emission

Matrix element corrections in parton showers

- Well-known method for reinstating $\mathcal{O}(\alpha_s)$ accuracy in parton shower radiation pattern
- Feasible only for simple cases

Reweighting principle (simplified)

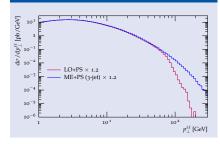
From above: weight with which to correct one emission

$$w_{ij,k} \,=\, \frac{\mathrm{d}\sigma_{\mathrm{rad}}^{ij,k}}{\mathrm{d}\sigma_{\mathrm{rad}}^{(\mathrm{PS})\,ij,k}} \,=\, \frac{2\,p_i p_j}{8\pi\,\alpha_s}\, \frac{\mathcal{R}_{ij,k}}{\mathcal{B}\,\mathcal{K}_{ij,k}} \;.$$

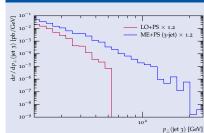
- Determine overestimate W_{ij} for the total weight throughout real-emission phase space
- Replace splitting kernels in parton shower $\mathcal{K}_{ij,k} \to W_{ij}\mathcal{K}_{ij,k}$
- Accept shower branchings only with probability w/W

Master formula

Cross section up to first emission in POWHEG

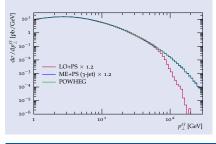

$$\sigma = \int \mathrm{d}\Phi_B \, \overline{\mathrm{B}} \Bigg[\underbrace{\Delta^{(\mathrm{ME})}(t_0,\mu^2)}_{\text{unresolved}} \,\, + \, \underbrace{\sum_{ij,k} \frac{1}{16\pi^2} \int\limits_{t_0}^{\mu^2} \mathrm{d}t \int\limits_{z_-}^{z_+} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \,\, \Delta^{(\mathrm{ME})}(t,\mu^2) \frac{\mathrm{R}_{ij,k}}{\mathrm{B}}} \, \Bigg]}_{\text{resolved}} \Bigg]$$

Features

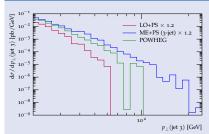

- \blacktriangleright NLO weight \overline{B} for Born-like event
- ▶ Unitarity: Term in square brackets [...] = 1⇒ NLO cross section preserved
- First resolved emission exact according to real emission ME
- ▶ No-branching probability $\Delta^{(ME)}(t_0, \mu^2)$ from R/B instead of K
- ▶ Only one corrected emission, further emissions in parton shower approximation

Canonical Example: Drell-Yan process $pp \to \ell\ell$

Transverse momentum of the lepton pair



Transverse momentum of the third jet



Canonical Example: Drell-Yan process $pp \to \ell\ell$

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Conclusions

- ▶ Inclusive rate at NLO \Rightarrow no K-factor necessary
- ▶ First hard emission properly accounted for ⇒ Observables sensitive to first emission (e.g. $p_{\perp}^{\ell\ell}$) fine
- Further emissions only in parton shower approximation
 - ⇒ Observables sensitive to higher order corrections not sufficiently described

The MENLOPS algorithm

Motivation

Two different methods to improve parton showers:

- POWHEG
 - + NLO accuracy in cross section
 - + First emission according to real emission ME
 - + Soft/collinear resummation from parton shower
 - Further hard emissions in parton shower approximation
- ► ME+PS
 - Only LO accuracy in cross section
 - + Soft/collinear resummation from parton shower
 - + All hard emissions according to real emission ME

Can we combine both methods and get rid of their disadvantages?

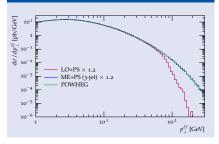
Idea starting from ME+PS

(see also Hamilton, Nason (2010))

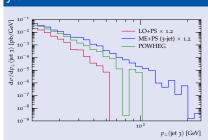
- ► Replace "unresolved" and "PS resolved" part in ME+PS with POWHEG i.e. run POWHEG generator instead of normal parton shower for first emission
- ► Generate "resolved ME" part separately through real emission MEs as before
- ▶ Supply real ME events with local K-factor $\frac{B}{B}$ formally beyond NLO, but necessary for smooth merging

Master formula

Cross section up to first emission in MENLOPS

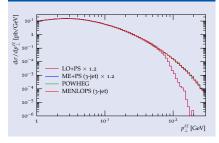

$$\begin{split} \sigma &= \int \! \mathrm{d}\Phi_B \, \overline{\mathrm{B}} \Bigg[\underbrace{\Delta^{(\mathrm{ME})}(t_0,\mu^2)}_{\text{unresolved}} &+ \sum_{ij,k} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} \mathrm{d}t \, \int_{z_-}^{z_+} \mathrm{d}z \, \int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \frac{\mathrm{R}_{ij,k}}{\mathrm{B}} \\ &\times \left(\underbrace{\Delta^{(\mathrm{ME})}(t,\mu^2) \, \Theta(Q_{\mathrm{cut}} - Q_{ij,k})}_{\text{resolved, PS domain}} + \underbrace{\Delta^{(\mathrm{PS})}(t,\mu^2) \, \Theta(Q_{ij,k} - Q_{\mathrm{cut}})}_{\text{resolved, ME domain}} \right) \Bigg] \end{split}$$

Features

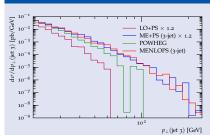

- ▶ NLO weight B for Born-like event
- ▶ Unitarity still slightly violated: [...] ≈ 1 ⇒ NLO cross section only approximately preserved
- R events generated separately (not through POWHEG) \Rightarrow has to be supplemented with local $\frac{\overline{B}(\Phi_B)}{\overline{B}(\Phi_B)}$ explicitely to reproduce the above

Canonical Example: Drell-Yan process $pp \to \ell\ell$

Transverse momentum of the lepton pair



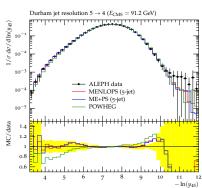
Transverse momentum of the third jet



Canonical Example: Drell-Yan process $pp o \ell\ell$

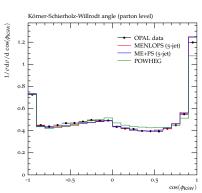
Transverse momentum of the lepton pair

Transverse momentum of the third jet



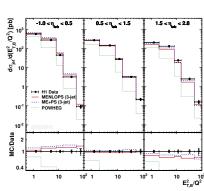
Conclusions

Jack-of-all-trades algorithm

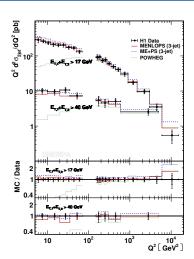

- ▶ Inclusive rate at NLO \Rightarrow no K-factor necessary
- ► Multiple hard emissions properly accounted for

Comparison to LEP results for $e^+e^- \rightarrow$ hadrons

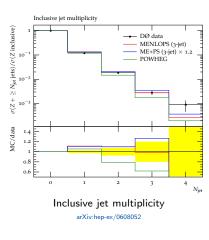
Jet resolution where 5 jets are clustered into 4 jets

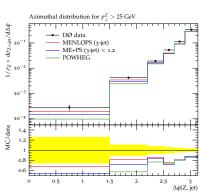

Eur. Phys. J. C35 (2004), 457-486

KSW Angle built from momenta of four most energetic jets


arXiv:hep-ex/0101044

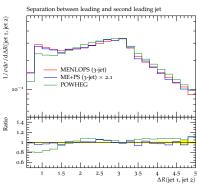
Comparison to HERA results for Deep-Inelastic lepton-nucleon Scattering


Inclusive jet cross section as function of transverse energy in Breit frame

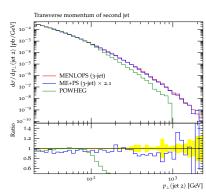

arXiv:hep-ex/0206029

Dijet cross section as function of Q^2 arXiv:hep-ex/0010054

Comparison to Tevatron results for $pp \to \ell\ell$


Azimuthal separation of lepton pair and leading jet

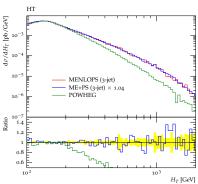
arXiv:0907.4286


troduction Parton showers Tree-level improvements NLO accuracy **Combining it all** Conclusion

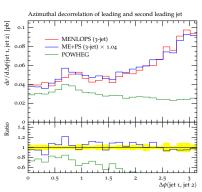
O OOOOO OOOO OOOO OOOOO●O O

Predictions for Higgs-production via gluon fusion at LHC

Separation between leading and second leading jet



Transverse momentum of second leading jet


troduction Parton showers Tree-level improvements NLO accuracy **Combining it all** Conclusion

O 00000 0000 00000 0

Predictions for W^+W^- production at LHC

Scalar sum of missing E_T and transverse momenta of jets and leptons

Azimuthal decorrelation between leading and second leading jet

Conclusions and outlook

Conclusions

- ► Tree-level ME+PS merging works well for shapes, but needs K-factor for cross section
- POWHEG reproduces full NLO cross section and shape of first emission but fails for additional hard radiation
- Combination of full NLO and higher order tree-level MEs with shower achieves both of the above
- Recently much progress and already first implementations
- Automation within SHERPA framework
- ▶ Full NLO only in core process, not in higher order corrections . . .

Outlook

- ▶ ... yet
- ► Application to more processes
- Public availability in a SHERPA release, as simple to use as tree-level merging