NLO accuracy in the Sherpa event generator

ATLAS Monte Carlo generator meeting, 8 Dec 2010
Frank Siegert

- arXiv:1009.1127 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1008.5399 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:0912.3501 (Stefan Höche, Steffen Schumann, FS)
- arXiv:0903.1219 (Stefan Höche, Frank Krauss, Steffen Schumann, FS)

Introduction: Parton shower formalism

Tree-level improvements
ME+PS formalism
Results

NLO accuracy
The POWHEG method Results

Combining it all
The MENLOPS algorithm
Results

Motivation

- Higher-order QCD corrections to hard scattering:

Infrared divergences from real/virtual cancel for inclusive quantities (\rightarrow KLN)

- But: Resolution through confinement of partons at $\mu_{\text {had }} \approx 1 \mathrm{GeV}$ (hadronisation) \Rightarrow Not inclusive
- Finite remainders of infrared singularities:
logarithms of ratio $\mu_{F} / \mu_{\text {had }}^{2}$ with each $\mathcal{O}\left(\alpha_{s}\right)$
- Such large logarithms have to be resummed to all orders

Parton shower:

- Higher orders represented by parton branchings
\Rightarrow Evolution of parton ensemble between μ_{F}^{2} and $\mu_{\text {had }}^{2}$

Question

How to get the (no-)branching probabilities to describe this evolution between different scales?

Factorisation of QCD emissions

Universal factorisation of QCD real emission ME in soft/collinear limit:

$$
\mathrm{R} \rightarrow \mathrm{~B} \times\left(\sum_{i j, k \in \text { partons }} \frac{1}{2 p_{i} p_{j}} 8 \pi \alpha_{s} \mathcal{K}_{i j, k}\left(p_{i}, p_{j}, p_{k}\right)\right)
$$

- B Born matrix element
- Sum over subterms $i j, k$ of the factorisation, e.g. parton lines (DGLAP) potentially with spectator k
- $\frac{1}{2 p_{i} p_{j}}$ from massless propagator

Evolution variable of shower $t \sim 2 p_{i} p_{j}$ (e.g. k_{\perp}, angle, \ldots)

- $\mathcal{K}_{i j, k}$ splitting kernel for branching $(i j)+k \rightarrow i+j+k$

Specific form depends on scheme of the factorisation above, e.g.:

- Altarelli-Parisi splitting functions
- Dipole terms from Catani-Seymour subtraction
- Antenna functions
- ...

Differential (no-)branching probability

- Radiative phase space: $\quad \mathrm{d} \Phi_{\text {rad }}^{i j, k}=\frac{1}{16 \pi^{2}} \mathrm{~d} t \mathrm{~d} z \frac{\mathrm{~d} \phi}{2 \pi}$
- Combined with radiative part of the factorised ME (Jacobian/symmetry factor/PDFs ignored)

$$
\mathrm{d} \sigma_{\mathrm{rad}}^{i j, k}=\frac{\mathrm{d} t}{t} \mathrm{~d} z \frac{\mathrm{~d} \phi}{2 \pi} \frac{\alpha_{s}}{2 \pi} \mathcal{K}_{i j, k} \quad \text { Differential branching probability }
$$

No-branching probability

Above: Differential probability for one branching to (not) happen in interval $\mathrm{d} t$ Goal: Total no-branching probability between scale t^{\prime} and $t^{\prime \prime}$

- Integrate over z, ϕ, and t from t^{\prime} to $t^{\prime \prime}$
- Assume multiple independent emissions (Poisson statistics) \Rightarrow Exponentiation
subterm: $\quad \Delta_{i j, k}\left(t^{\prime}, t^{\prime \prime}\right)=\exp \left\{-\sum_{f_{i}=q, g} \int_{t^{\prime}}^{t^{\prime \prime}} \frac{\mathrm{d} t}{t} \int_{z_{-}}^{z_{+}} \mathrm{d} z \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi} \frac{\alpha_{s}}{2 \pi} \mathcal{K}_{i j, k}(z, t)\right\}$

$$
\text { event: } \quad \Delta\left(t^{\prime}, t^{\prime \prime}\right)=\prod_{i j, k} \Delta_{i j, k}\left(t^{\prime}, t^{\prime \prime}\right)
$$

Cross section up to first emission in a parton shower

$$
\sigma=\int \mathrm{d} \Phi_{B} \mathrm{~B}[\underbrace{\Delta\left(t_{0}, \mu^{2}\right)}_{\text {unresolved }}+\underbrace{\sum_{i j, k} \frac{1}{16 \pi^{2}} \int_{t_{0}}^{\mu^{2}} \mathrm{~d} t \int_{z_{-}}^{z_{+}} \mathrm{d} z \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi} \Delta\left(t, \mu^{2}\right) \frac{8 \pi \alpha_{s}}{2 p_{i} p_{j}} \mathcal{K}_{i j, k}(z, t)}_{\text {resolved }}]
$$

Features

- LO weight B for Born-like event
- Unitarity: Term in square brackets $[\ldots]=1 \Rightarrow$ LO cross section preserved
- "Unresolved" part: No emissions above parton shower cutoff t_{0}
- "Resolved" part: Emission between t_{0} and factorisation scale μ^{2}
- Emission in parton shower approximation with $\mathcal{K}_{i j, k}$

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Conclusions

- $p_{\perp}^{\ell \ell}$ probes QCD emissions because of recoil
- Resummation avoids divergence of fixed order calculation for $p_{\perp}^{\ell \ell} \rightarrow 0$
- Hard QCD emissions (leading to $p_{\perp}^{\ell \ell}>\mu_{F}^{2} \approx m_{Z}$) not well described (as we will see later)
- Factor $K=1.2$ to compare to NLO results later

Main idea of ME+PS merging

Phase space slicing for QCD radiation in shower evolution

- Hard emissions $Q_{i j, k}(z, t)>Q_{\text {cut }}$
- Events rejected
- Compensated by events starting from higher-order ME (regularised by $Q_{\text {cut }}$)
\Rightarrow Splitting kernels replaced by exact real emission matrix elements

$$
\mathrm{B} \times \frac{8 \pi \alpha_{s}}{2 p_{i} p_{j}} \mathcal{K}_{i j, k}(z, t) \quad \rightarrow \quad \mathrm{B} \times \frac{8 \pi \alpha_{s}}{2 p_{i} p_{j}} \mathcal{K}_{i j, k}^{\mathrm{ME}}(z, t)=\mathrm{R}_{i j, k}
$$

- Soft/collinear emissions $Q_{i j, k}(z, t)<Q_{\text {cut }}$
\Rightarrow Retained from parton shower $\quad \mathcal{K}_{i j, k}(z, t)=\mathcal{K}_{i j, k}^{\mathrm{PS}}(z, t)$

Note

- Boundary determined by "jet criterion" $Q_{i j, k}$
- Has to identify soft/collinear divergences in MEs, like jet algorithm
- Otherwise arbitrary, but some choices better than others
- In both regions: No-branching probabilities still from shower

$$
\Delta\left(t^{\prime}, t^{\prime \prime}\right) \quad \rightarrow \quad \Delta^{(\mathrm{PS})}\left(t^{\prime}, t^{\prime \prime}\right)
$$

Translate ME event into shower language

Why?

- Need starting scales t for PS evolution
- Have to embed existing emissions into PS evolution

Problem: ME only gives final state, no history
Solution: Backward-clustering (running the shower reversed), similar to jet algorithm:

1. Select last splitting according to shower probablities
2. Recombine partons using inverted shower kinematics \rightarrow N-1 particles + splitting variables for one node
3. Reweight $\alpha_{s}\left(\mu^{2}\right) \rightarrow \alpha_{s}\left(p_{\perp}^{2}\right)$
4. Repeat 1 - 3 until core process $(2 \rightarrow 2)$

Truncated shower

- Shower each (external and intermediate!) line between determined scales
- "Boundary" scales: factorisation scale μ_{F}^{2} and shower cut-off t_{o}

Cross section up to first emission in ME + PS

$$
\begin{aligned}
& \sigma=\int \mathrm{d} \Phi_{B} \mathrm{~B}[\underbrace{\Delta^{(\mathrm{PS})}\left(t_{0}, \mu^{2}\right)}_{\text {unresolved }}+\sum_{i j, k} \frac{1}{16 \pi^{2}} \int_{t_{0}}^{\mu^{2}} \mathrm{~d} t \int_{z_{-}}^{z_{+}} \mathrm{d} z \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi} \Delta^{(\mathrm{PS})}\left(t, \mu^{2}\right) \\
&\times(\underbrace{\frac{8 \pi \alpha_{s}}{2 p_{i} p_{j}} \mathcal{K}_{i j, k}^{(\mathrm{PS})}(z, t) \Theta\left(Q_{\mathrm{cut}}-Q_{i j, k}\right)}_{\text {resolved, PS domain }}+\underbrace{\frac{\mathrm{R}_{i j, k}}{\mathrm{~B}} \Theta\left(Q_{i j, k}-Q_{\mathrm{cut}}\right)}_{\text {resolved, ME domain }})]
\end{aligned}
$$

Features

- LO weight B for Born-like event
- Unitarity slightly violated due to mismatch of $\Delta^{(P S)}$ and R / B
$[\ldots] \approx 1 \Rightarrow$ LO cross section only approximately preserved
- Unresolved emissions as in parton shower approach
- Resolved emissions now sliced into PS and ME domain
- Only for one emission here, but possible up to very high number of emissions

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Conclusions

- Multiple hard emissions properly accounted for
- Resummation preserved
- Inclusive rate still at $\mathrm{LO} \Rightarrow$ factor $K=1.2$ necessary

Results: Features and shortcomings

Example

Diphoton production at Tevatron

- Recently published by DØ Phys.Lett.B690:108-117,2010
- Isolated hard photons with:
- $E_{\perp}^{\gamma^{1}}>21 \mathrm{GeV}$
- $E_{\perp}^{\gamma^{2}}>20 \mathrm{GeV}$
- $\left|\eta_{\gamma}\right|<0.9$
- Isolation: $E_{\perp}(R=0.4)-E_{\perp}^{\gamma}<2.5 \mathrm{GeV}$
- Here: Azimuthal angle between the diphoton pair

ME+PS simulation using Sherpa 1.2.2 with QCD+QED interleaved shower and merging

Höche, Schumann, FS (2010)

Conclusions

Shapes described very well even for this non-trivial process/observable for both:

- Hard region, e.g. $\Delta \Phi_{\gamma \gamma} \rightarrow 0$
- Soft region, e.g. $\Delta \Phi_{\gamma \gamma} \rightarrow \pi$

Total cross section too low \Rightarrow Virtual MEs needed

The POWHEG method

Motivation

- Parton shower for resummation \checkmark
- ME+PS for correct hard radiation pattern \checkmark
- Inclusive rate still at LO in $\alpha_{s} \ldots$ can we do NLO + parton shower?
- MC@NLO Frixione, Webber (2002)
- POWHEG Nason (2004), Frixione, Nason, Oleari (2007) (used in the following)

Two issues to solve

1. Cross section at NLO accuracy in α_{s}
2. Radiation pattern of first emission according to real ME

Note

- Completely orthogonal to and independent of ME+PS merging
- Only possible for first emission, not for higher orders

Reminder: Matrix elements contributing to NLO

- Born ME \rightarrow automatic tree-level generators
- Virtual ME \rightarrow dedicated codes, Binoth Les Houches interface
- Real emission ME \rightarrow automatic tree-level generators

Integrating over real emission phase space

- Problem: Cancellation of infrared divergences between virtual and real, Separate numerical integration (N and $N+1$ final states) not possible
- Solution: Subtraction procedure, e.g. Catani-Seymour or Frixione-Kunszt-Signer
- Subtract universal divergent terms from real ME (S)
- Integrate them analytically and add to virtual ME (I)
\Rightarrow Poles cancel
- Integration of real emission phase space explicitely or by Monte-Carlo sampling
\Rightarrow NLO weight for event with Born level kinematics

$$
\overline{\mathrm{B}}=\mathrm{B}+\mathrm{V}+\mathrm{I}+\sum_{\{\tilde{\imath}, \tilde{k}\}} \sum_{f_{i}=q, g} \int \mathrm{~d} \Phi_{R \mid B}^{i j, k}\left[\mathrm{R}_{i j, k}-\mathrm{S}_{i j, k}\right]
$$

Matrix element corrections in parton showers

- Well-known method for reinstating $\mathcal{O}\left(\alpha_{s}\right)$ accuracy in parton shower radiation pattern (\rightarrow Herwig, Pythia)
- Feasible only for simple cases

Reweighting principle (simplified)

- From above: weight with which to correct one emission

$$
w_{i j, k}=\frac{\mathrm{d} \sigma_{\mathrm{rad}}^{i j, k}}{\mathrm{~d} \sigma_{\mathrm{rad}}^{(\mathrm{PS}) i j, k}}=\frac{2 p_{i} p_{j}}{8 \pi \alpha_{s}} \frac{\mathcal{R}_{i j, k}}{\mathcal{B} \mathcal{K}_{i j, k}} .
$$

- Determine overestimate $W_{i j}$ for the total weight throughout real-emission phase space
- Replace splitting kernels in parton shower $\mathcal{K}_{i j, k} \rightarrow W_{i j} \mathcal{K}_{i j, k}$
- Accept shower branchings only with probability w / W

Cross section up to first emission in POWHEG

$$
\sigma=\int \mathrm{d} \Phi_{B} \overline{\mathrm{~B}}[\underbrace{\Delta^{(\mathrm{ME})}\left(t_{0}, \mu^{2}\right)}_{\text {unresolved }}+\underbrace{\left.\sum_{i j, k} \frac{1}{16 \pi^{2}} \int_{t_{0}}^{\mu^{2}} \mathrm{~d} t \int_{z_{-}}^{z_{+}} \mathrm{d} z \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi} \Delta^{(\mathrm{ME})}\left(t, \mu^{2}\right) \frac{\mathrm{R}_{i j, k}}{\mathrm{~B}}\right]}_{\text {resolved }}]
$$

Features

- NLO weight $\overline{\mathrm{B}}$ for Born-like event
- Unitarity: Term in square brackets [...] =1
\Rightarrow NLO cross section preserved
- First resolved emission exact according to real emission ME
- No-branching probability $\Delta^{(\mathrm{ME})}\left(t_{0}, \mu^{2}\right)$ from R / B instead of \mathcal{K}
- Only one corrected emission, further emissions in parton shower approximation

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Canonical Example: Drell-Yan process $p p \rightarrow \ell \ell$

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Conclusions

- Inclusive rate at NLO \Rightarrow no K-factor necessary
- First hard emission properly accounted for
\Rightarrow Observables sensitive to first emission (e.g. $p_{\perp}^{\ell \ell}$) fine
- Further emissions only in parton shower approximation
\Rightarrow Observables sensitive to higher order corrections not sufficiently described

The MENLOPS algorithm

Motivation

Two different methods to improve parton showers:

- POWHEG
+ NLO accuracy in cross section
+ First emission according to real emission ME
+ Soft/collinear resummation from parton shower
- Further hard emissions in parton shower approximation
- ME+PS
- Only LO accuracy in cross section
+ Soft/collinear resummation from parton shower
+ All hard emissions according to real emission ME
Can we combine both methods and get rid of their disadvantages?

Idea starting from ME+PS

(see also Hamilton, Nason (2010))

- Replace "unresolved" and "PS resolved" part in ME+PS with POWHEG i.e. run POWHEG generator instead of normal parton shower for first emission
- Generate "resolved ME" part separately through real emission MEs as before
- Supply real ME events with local K-factor $\frac{\bar{B}}{\bar{B}}$
formally beyond NLO, but necessary for smooth merging

Master formula

Cross section up to first emission in MENLOPS

$$
\begin{aligned}
& \sigma=\int \mathrm{d} \Phi_{B} \overline{\mathrm{~B}}[\underbrace{\Delta^{(\mathrm{ME})}\left(t_{0}, \mu^{2}\right)}_{\text {unresolved }}+\sum_{i j, k} \frac{1}{16 \pi^{2}} \int_{t_{0}}^{\mu^{2}} \mathrm{~d} t \int_{z_{-}}^{z_{+}} \mathrm{d} z \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi} \frac{\mathrm{R}_{i j, k}}{\mathrm{~B}} \\
&\times(\underbrace{\Delta^{(\mathrm{ME})}\left(t, \mu^{2}\right) \Theta\left(Q_{\mathrm{cut}}-Q_{i j, k}\right)}_{\text {resolved, PS domain }}+\underbrace{\Delta^{(\mathrm{PS})}\left(t, \mu^{2}\right) \Theta\left(Q_{i j, k}-Q_{\mathrm{cut}}\right)}_{\text {resolved, ME domain }})]
\end{aligned}
$$

Features

- NLO weight $\overline{\mathrm{B}}$ for Born-like event
- Unitarity still slightly violated, but deviations are beyond NLO:
$[\ldots]=1+\mathcal{O}\left(\alpha_{s}\right)$
- Algorithmically ME domain events generated separately (not through POWHEG) $\Rightarrow R_{i j, k}$ has to be supplemented with local $\frac{\overline{\mathrm{B}}\left(\Phi_{B}\right)}{\bar{B}\left(\Phi_{B}\right)}$ explicitely to reproduce the above

Canonical Example: Drell-Yan process $p p \rightarrow \ell \ell$

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Canonical Example: Drell-Yan process $p p \rightarrow \ell \ell$

Transverse momentum of the lepton pair

Transverse momentum of the third jet

Conclusions

Jack-of-all-trades algorithm

- Inclusive rate at NLO \Rightarrow no K-factor necessary
- Multiple hard emissions properly accounted for

Jet resolution where 5 jets are clustered into 4 jets

Eur. Phys. J. C35 (2004), 457-486

KSW Angle built from momenta of four most energetic jets
arXiv:hep-ex/0101044

Comparison to HERA results for Deep-Inelastic lepton-nucleon Scattering

Inclusive jet cross section as function of transverse energy in Breit frame
arXiv:hep-ex/0206029

Dijet cross section as function of Q^{2}
arXiv:hep-ex/0010054

Inclusive jet multiplicity
arXiv:hep-ex/0608052

Azimuthal separation of lepton pair and leading jet
arXiv:0907.4286

Predictions for Higgs-production via gluon fusion at LHC

Separation between leading and second leading jet

Transverse momentum of second leading jet

Predictions for $W^{+} W^{-}$production at LHC

Scalar sum of missing E_{T} and transverse momenta of jets and leptons

Azimuthal decorrelation between leading and second leading jet

Conclusions

- Tree-level ME+PS merging works well for shapes, but needs K-factor for cross section
- POWHEG reproduces full NLO cross section and shape of first emission but fails for additional hard radiation
- Combination of full NLO and higher order tree-level MEs with shower achieves both of the above
- Recently much progress and already first implementations
- Automation within SHERPA framework

Availability

- Released with Sherpa 1.2.3 on 7 Dec 2010
- Available in Genser, will be collected into an Athena release soon

Outlook

- Full NLO only in core process, not in higher order corrections yet
- Application to more processes (e.g. multi-jet production)

