NLO accuracy in the Sherpa event generator

ATLAS Monte Carlo generator meeting, 8 Dec 2010

Frank Siegert

Albert-Ludwigs-Universität Freiburg

Based on

- arXiv:1009.1127 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1008.5399 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:0912.3501 (Stefan Höche, Steffen Schumann, FS)
- arXiv:0903.1219 (Stefan Höche, Frank Krauss, Steffen Schumann, FS)

UNI FREIBURG

T 11 (C 1)		

Table of Contents

Introduction: Parton shower formalism

Tree-level improvements ME+PS formalism Results

NLO accuracy The POWHEG method Results

Combining it all The MENLOPS algorithm Results

Introduction: Parton shower formalism •00000		
Recap: Parton showers		

Motivation

- Higher-order QCD corrections to hard scattering: Infrared divergences from real/virtual cancel for inclusive quantities (→ KLN)
- ▶ But: Resolution through confinement of partons at $\mu_{had} \approx 1$ GeV (hadronisation) ⇒ Not inclusive
- Finite remainders of infrared singularities: logarithms of ratio μ_F/μ²_{had} with each O(α_s)
- Such large logarithms have to be resummed to all orders

Parton shower:

- Higher orders represented by parton branchings
- \Rightarrow Evolution of parton ensemble between μ_F^2 and $\mu_{\rm had}^2$

Question

How to get the (no-)branching probabilities to describe this evolution between different scales?

Introduction: Parton shower formalism			
Construction of a parton showe	er (I/II)		

Factorisation of QCD emissions

Universal factorisation of QCD real emission ME in soft/collinear limit:

$$\mathbf{R} \rightarrow \mathbf{B} \times \left(\sum_{ij,k \in \mathsf{partons}} \frac{1}{2p_i p_j} 8\pi \alpha_s \, \mathcal{K}_{ij,k}(p_i, p_j, p_k) \right)$$

- B Born matrix element
- Sum over subterms *ij*, *k* of the factorisation, e.g. parton lines (DGLAP) potentially with spectator k
- ▶ $\frac{1}{2p_i p_j}$ from massless propagator Evolution variable of shower $t \sim 2p_i p_j$ (e.g. k_{\perp} , angle, ...)
- K_{ij,k} splitting kernel for branching (ij) + k → i + j + k Specific form depends on scheme of the factorisation above, e.g.:
 - Altarelli-Parisi splitting functions
 - Dipole terms from Catani-Seymour subtraction
 - Antenna functions
 - ...

Introduction: Parton shower formalism		
00000		

Construction of a parton shower (II/II)

Differential (no-)branching probability

- Radiative phase space: $d\Phi_{rad}^{ij,k} = \frac{1}{16\pi^2} dt dz \frac{d\phi}{2\pi}$
- ► Combined with radiative part of the factorised ME (Jacobian/symmetry factor/PDFs ignored)

$$\mathrm{d}\sigma_{\mathrm{rad}}^{ij,k} = \frac{\mathrm{d}t}{t}\,\mathrm{d}z\,\frac{\mathrm{d}\phi}{2\pi}\,\frac{\alpha_s}{2\pi}\,\mathcal{K}_{ij,k}$$

Differential branching probability

No-branching probability

Above: Differential probability for one branching to (not) happen in interval dtGoal: Total no-branching probability between scale t' and t''

- Integrate over z, ϕ , and t from t' to t''
- ► Assume multiple independent emissions (Poisson statistics) ⇒ Exponentiation

subterm:
$$\Delta_{ij,k}(t',t'') = \exp\left\{-\sum_{f_i=q,g} \int_{t'}^{t''} \frac{\mathrm{d}t}{t} \int_{z_-}^{z_+} \mathrm{d}z \int_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \frac{\alpha_s}{2\pi} \mathcal{K}_{ij,k}(z,t)\right\}$$

event: $\Delta(t',t'') = \prod_{ij,k} \Delta_{ij,k}(t',t'')$

Introduction: Parton shower formalism		

Master formula

Cross section up to first emission in a parton shower

$$\sigma = \int \mathrm{d}\Phi_B \operatorname{B}\left[\underbrace{\Delta(t_0, \mu^2)}_{\text{unresolved}} + \underbrace{\sum_{ij,k} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} \mathrm{d}t \int_{z_-}^{z_+} \mathrm{d}z \int_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \Delta(t, \mu^2) \frac{8\pi \,\alpha_s}{2p_i p_j} \,\mathcal{K}_{ij,k}(z,t)}_{\text{resolved}}\right]$$

Features

- LO weight B for Born-like event
- Unitarity: Term in square brackets $[\ldots] = 1 \Rightarrow LO$ cross section preserved
- "Unresolved" part: No emissions above parton shower cutoff t_0
- "Resolved" part: Emission between t_0 and factorisation scale μ^2
- Emission in parton shower approximation with $\mathcal{K}_{ij,k}$

Introduction: Parton shower formalism		
00000		

Conclusions

- ▶ $p_{\perp}^{\ell \ell}$ probes QCD emissions because of recoil
- \blacktriangleright Resummation avoids divergence of fixed order calculation for $p_{\perp}^{\ell\ell} \rightarrow 0$
- ▶ Hard QCD emissions (leading to $p_{\perp}^{\ell\ell} > \mu_F^2 \approx m_Z$) not well described (as we will see later)
- Factor K = 1.2 to compare to NLO results later

Tree-level improvements		
00000		

ME+PS formalism

Main idea of ME+PS merging

Phase space slicing for QCD radiation in shower evolution

- Hard emissions $Q_{ij,k}(z,t) > Q_{\text{cut}}$
 - Events rejected
 - Compensated by events starting from higher-order ME (regularised by $Q_{\rm cut}$)
 - \Rightarrow Splitting kernels replaced by exact real emission matrix elements

$$\mathbf{B} \times \frac{8\pi\alpha_s}{2p_ip_j} \mathcal{K}_{ij,k}(z,t) \quad \rightarrow \quad \mathbf{B} \times \frac{8\pi\alpha_s}{2p_ip_j} \mathcal{K}^{\mathrm{ME}}_{ij,k}(z,t) \; = \; \mathbf{R}_{ij,k}$$

► Soft/collinear emissions $Q_{ij,k}(z,t) < Q_{cut}$ ⇒ Retained from parton shower $\mathcal{K}_{ij,k}(z,t) = \mathcal{K}_{ij,k}^{PS}(z,t)$

Note

- Boundary determined by "jet criterion" $Q_{ij,k}$
 - Has to identify soft/collinear divergences in MEs, like jet algorithm
 - Otherwise arbitrary, but some choices better than others
- In both regions: No-branching probabilities still from shower

$$\Delta(t',t'') \rightarrow \Delta^{(\mathrm{PS})}(t',t'')$$

Tree-level improvements		
0000		

ME+PS: How to shower higher-multi ME

Translate ME event into shower language

Why?

- Need starting scales t for PS evolution
- Have to embed existing emissions into PS evolution

Problem: ME only gives final state, no history Solution: Backward-clustering (running the shower

reversed), similar to jet algorithm:

- 1. Select last splitting according to shower probablities
- 2. Recombine partons using inverted shower kinematics \rightarrow N-1 particles + splitting variables for one node
- 3. Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$
- 4. Repeat 1 3 until core process $(2 \rightarrow 2)$

- Shower each (external and intermediate!) line between determined scales
- "Boundary" scales: factorisation scale μ_F^2 and shower cut-off t_o

Tree-level improvements		
00000		

Master formula

Cross section up to first emission in ME+PS

$$\begin{split} \sigma \ &= \ \int \mathrm{d}\Phi_B \ \mathrm{B}\left[\underbrace{\Delta^{(\mathrm{PS})}_{\mathrm{unresolved}}(t_0,\mu^2)}_{\mathrm{unresolved}} \ + \ \sum_{ij,k} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} \mathrm{d}t \ \int_{z_-}^{z_+} \mathrm{d}z \ \int_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \ \Delta^{(\mathrm{PS})}(t,\mu^2) \\ &\times \ \left(\underbrace{\frac{8\pi \ \alpha_s}{2p_i p_j} \ \mathcal{K}^{(\mathrm{PS})}_{ij,k}(z,t) \ \Theta(Q_{\mathrm{cut}} - Q_{ij,k})}_{\mathrm{resolved}, \ \mathrm{PS} \ \mathrm{domain}} \ + \underbrace{\frac{\mathrm{R}_{ij,k}}{\mathrm{B}} \ \Theta(Q_{ij,k} - Q_{\mathrm{cut}})}_{\mathrm{resolved}, \ \mathrm{ME} \ \mathrm{domain}} \right) \right] \end{split}$$

Features

- ▶ LO weight B for Born-like event
- Unitarity slightly violated due to mismatch of $\Delta^{(PS)}$ and R/B $[\ldots] \approx 1 \Rightarrow$ LO cross section only approximately preserved
- Unresolved emissions as in parton shower approach
- Resolved emissions now sliced into PS and ME domain
- Only for one emission here, but possible up to very high number of emissions

Tree-level improvements		
00000		

Tree-level improvements		
00000		

Conclusions

- Multiple hard emissions properly accounted for
- Resummation preserved
- ▶ Inclusive rate still at LO \Rightarrow factor K = 1.2 necessary

Tree-level improvements		
00000		

Results: Features and shortcomings

Example

Diphoton production at Tevatron

- Recently published by DØ Phys.Lett.B690:108-117,2010
- Isolated hard photons with:
 - ► $E_{\perp}^{\gamma^1} > 21 \text{ GeV}$
 - ► $E_{\perp}^{\gamma^2} > 20 \text{ GeV}$
 - $|\eta_{\gamma}| < 0.9$
 - Isolation: $E_{\perp}(R = 0.4) E_{\perp}^{\gamma} < 2.5 \text{ GeV}$
- Here: Azimuthal angle between the diphoton pair

 $\label{eq:MEPA} \begin{array}{l} \mathsf{ME}+\mathsf{PS} \text{ simulation using } \mathrm{SHERPA} \ 1.2.2 \text{ with} \\ \mathsf{QCD}+\mathsf{QED} \text{ interleaved shower and merging} \end{array}$

Höche, Schumann, FS (2010)

Conclusions

Shapes described very well even for this non-trivial process/observable for both:

- Hard region, e.g. $\Delta \Phi_{\gamma\gamma} \rightarrow 0$
- Soft region, e.g. $\Delta \Phi_{\gamma\gamma} \rightarrow \pi$

Total cross section too low \Rightarrow Virtual MEs needed

	NLO accuracy	
The DOM/UEC method		

Motivation

- ▶ Parton shower for resummation \checkmark
- \blacktriangleright ME+PS for correct hard radiation pattern \checkmark
- ▶ Inclusive rate still at LO in α_s ... can we do NLO + parton shower?
 - MC@NLO Frixione, Webber (2002)
 - POWHEG Nason (2004), Frixione, Nason, Oleari (2007) (used in the following)

Two issues to solve

- 1. Cross section at NLO accuracy in α_s
- 2. Radiation pattern of first emission according to real ME

Note

- Completely orthogonal to and independent of ME+PS merging
- Only possible for first emission, not for higher orders

	NLO accuracy	
	00000	

Cross section at NLO accuracy in α_s

Reminder: Matrix elements contributing to NLO

- \blacktriangleright Born ME \rightarrow automatic tree-level generators
- \blacktriangleright Virtual ME \rightarrow dedicated codes, Binoth Les Houches interface
- \blacktriangleright Real emission ME \rightarrow automatic tree-level generators

Integrating over real emission phase space

- Problem: Cancellation of infrared divergences between virtual and real, Separate numerical integration (N and N + 1 final states) not possible
- Solution: Subtraction procedure, e.g. Catani-Seymour or Frixione-Kunszt-Signer
 - Subtract universal divergent terms from real ME (S)
 - Integrate them analytically and add to virtual ME (I)
 - ⇒ Poles cancel
- Integration of real emission phase space explicitely or by Monte-Carlo sampling
- \Rightarrow NLO weight for event with Born level kinematics

$$\overline{\mathbf{B}} = \mathbf{B} + \mathbf{V} + \mathbf{I} + \sum_{\{\tilde{\imath}\tilde{\jmath},\tilde{k}\}} \sum_{f_i = q,g} \int \mathrm{d}\Phi_{R|B}^{ij,k} \left[\mathbf{R}_{ij,k} - \mathbf{S}_{ij,k} \right]$$

		NLO accuracy 00●00	
Radiation pattern of first emi	ssion		

Matrix element corrections in parton showers

- Well-known method for reinstating $\mathcal{O}(\alpha_s)$ accuracy in parton shower radiation pattern (\rightarrow Herwig, Pythia)
- Feasible only for simple cases

Reweighting principle (simplified)

From above: weight with which to correct one emission

$$w_{ij,k} = \frac{\mathrm{d}\sigma_{\mathrm{rad}}^{ij,k}}{\mathrm{d}\sigma_{\mathrm{rad}}^{(\mathrm{PS})\,ij,k}} = \frac{2\,p_i p_j}{8\pi\,\alpha_s}\,\frac{\mathcal{R}_{ij,k}}{\mathcal{B}\,\mathcal{K}_{ij,k}}$$

- \blacktriangleright Determine overestimate W_{ij} for the total weight throughout real-emission phase space
- Replace splitting kernels in parton shower $\mathcal{K}_{ij,k} \rightarrow W_{ij}\mathcal{K}_{ij,k}$
- Accept shower branchings only with probability w/W

	NLO accuracy 000●0	

Master formula

Cross section up to first emission in POWHEG

$$\sigma = \int \mathrm{d}\Phi_B \,\overline{\mathrm{B}} \Bigg[\underbrace{\Delta^{(\mathrm{ME})}(t_0, \mu^2)}_{\text{unresolved}} + \underbrace{\sum_{ij,k} \frac{1}{16\pi^2} \int\limits_{t_0}^{\mu^2} \mathrm{d}t \int\limits_{z_-}^{z_+} \mathrm{d}z \int\limits_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \Delta^{(\mathrm{ME})}(t, \mu^2) \frac{\mathrm{R}_{ij,k}}{\mathrm{B}}}_{\text{resolved}} \Bigg]$$

Features

- NLO weight \overline{B} for Born-like event
- ▶ Unitarity: Term in square brackets [...] = 1⇒ NLO cross section preserved
- First resolved emission exact according to real emission ME
- ▶ No-branching probability $\Delta^{(ME)}(t_0, \mu^2)$ from R/B instead of K
- > Only one corrected emission, further emissions in parton shower approximation

	NLO accuracy	
	00000	

	NLO accuracy	
	00000	

Conclusions

- ▶ Inclusive rate at NLO \Rightarrow no K-factor necessary
- First hard emission properly accounted for ⇒ Observables sensitive to first emission (e.g. p^{ℓℓ}) fine
- Further emissions only in parton shower approximation ⇒ Observables sensitive to higher order corrections not sufficiently described

	Combining it all	
	• 0 000000	

The MENLOPS algorithm

Motivation

Two different methods to improve parton showers:

- ► POWHEG
 - + NLO accuracy in cross section
 - + First emission according to real emission ME
 - + Soft/collinear resummation from parton shower
 - Further hard emissions in parton shower approximation
- ME+PS
 - Only LO accuracy in cross section
 - + Soft/collinear resummation from parton shower
 - + All hard emissions according to real emission ME

Can we combine both methods and get rid of their disadvantages?

Idea starting from ME+PS

(see also Hamilton, Nason (2010))

- Replace "unresolved" and "PS resolved" part in ME+PS with POWHEG i.e. run POWHEG generator instead of normal parton shower for first emission
- ► Generate "resolved ME" part separately through real emission MEs as before
- Supply real ME events with local K-factor B/B formally beyond NLO, but necessary for smooth merging

	Combining it all	
	0000000	

Master formula

Cross section up to first emission in MENLOPS

$$\begin{split} \sigma \ &= \ \int \mathrm{d}\Phi_B \,\overline{\mathrm{B}} \Bigg[\underbrace{\Delta^{(\mathrm{ME})}(t_0, \mu^2)}_{\text{unresolved}} &+ \ \sum_{ij,k} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} \mathrm{d}t \, \int_{z_-}^{z_+} \mathrm{d}z \, \int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \, \frac{\mathrm{R}_{ij,k}}{\mathrm{B}} \\ &\times \, \left(\underbrace{\Delta^{(\mathrm{ME})}(t, \mu^2) \, \Theta(Q_{\mathrm{cut}} - Q_{ij,k})}_{\text{resolved}, \, \mathrm{PS} \, \mathrm{domain}} + \underbrace{\Delta^{(\mathrm{PS})}(t, \mu^2) \, \Theta(Q_{ij,k} - Q_{\mathrm{cut}})}_{\text{resolved, ME} \, \mathrm{domain}} \right) \Bigg] \end{split}$$

Features

- ▶ NLO weight \overline{B} for Born-like event
- Unitarity still slightly violated, but deviations are beyond NLO: $[\ldots] = 1 + \mathcal{O}(\alpha_s)$
- Algorithmically ME domain events generated separately (not through POWHEG) $\Rightarrow R_{ij,k}$ has to be supplemented with local $\frac{\overline{B}(\Phi_B)}{\overline{B}(\Phi_B)}$ explicitly to reproduce the above

	Combining it all	
	0000000	

	Combining it all	
	0000000	

Conclusions

Jack-of-all-trades algorithm

- Inclusive rate at NLO \Rightarrow no K-factor necessary
- Multiple hard emissions properly accounted for

	Combining it all	

Comparison to LEP results for $e^+e^- \rightarrow$ hadrons

	Combining it all	
	00000000	

Comparison to HERA results for Deep-Inelastic lepton-nucleon Scattering

	Combining it all ○○○○○●○○	

Comparison to Tevatron results for $pp \to \ell \ell$

	Combining it all	
	0000000	

Predictions for Higgs-production via gluon fusion at LHC

	Combining it all ○○○○○○●	

Predictions for W^+W^- production at LHC

		Conclusions
		•

Conclusions

- Tree-level ME+PS merging works well for shapes, but needs K-factor for cross section
- POWHEG reproduces full NLO cross section and shape of first emission but fails for additional hard radiation
- Combination of full NLO and higher order tree-level MEs with shower achieves both of the above
- Recently much progress and already first implementations
- Automation within SHERPA framework

Availability

- Released with Sherpa 1.2.3 on 7 Dec 2010
- Available in Genser, will be collected into an Athena release soon

Outlook

- Full NLO only in core process, not in higher order corrections yet
- Application to more processes (e.g. multi-jet production)