# A critical appraisal of NLO+PS matching 

Particle Physics Seminar, Zürich
Frank Siegert

## Based on

- arXiv:1111.1220 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1008.5399 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)



## A critical appraisal of NLO+PS matching

Introduction
Motivation
Fixed order calculations (NLO)
Resummation in parton-showers (PS)

Common formalism for NLO+PS matching
From fixed order to resummation
Special cases: POWHEG and Mc@NLO
Subtleties to note

## Results

NLO + PS uncertainties
Predictions for $p p \rightarrow h+$ jet
Comparison to data for $W / Z+$ jet

Conclusions

## Two approaches to higher-order corrections

## Fixed order ME calculation

+ Exact to fixed order
+ Includes all interferences
$+N_{C}=3$ (summed or sampled)
+ Includes virtual contributions
- Perturbation breaks down in logarithmically enhanced regions
- Only low FS multiplicity


## Parton Shower

+ Resums logarithmically enhanced contributions to all orders
+ High-multiplicity final state
+ Allows for exclusive hadron-level events
- Only approximation for emission ME
- Large $N_{C}$ limit

$$
\Downarrow
$$

## Goal: Combine advantages

- Include virtual contributions and hard QCD radiation from NLO ME
- Keep intrajet evolution provided by the PS


## Reminder + Notation: Subtraction method

- Contributions to NLO cross section: $\mathcal{B o r n}, \mathcal{V}$ irtual and $\mathcal{R e a l}$ emission
- $\mathcal{V}$ and $\mathcal{R}$ divergent in separate phase space integrations
$\Rightarrow$ Subtraction method for expectation value of observable $O$ at NLO:

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO})}=\sum_{\overrightarrow{f_{\mathrm{B}}}} & \int \mathrm{~d} \Phi_{B}\left[\mathcal{B}\left(\Phi_{B}\right)+\tilde{\mathcal{V}}\left(\Phi_{B}\right)+\sum_{\widetilde{\imath \jmath}} \mathcal{I}_{\overparen{\imath \jmath}}^{(\mathrm{S})}\left(\Phi_{B}\right)\right] O\left(\Phi_{B}\right) \\
& +\sum_{\overrightarrow{f_{\mathrm{R}}}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right) O\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{S})}\left(\Phi_{R}\right) O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
\end{aligned}
$$

- Subtraction terms $\mathcal{D}$ and their integrated form $\mathcal{I}$ given e.g. by Frixione-Kunszt-Signer or Catani-Seymour
- Subtraction defines phase space mappings $\Phi_{R} \underset{r_{\tilde{\imath j}}}{\stackrel{b_{i j}}{\rightleftharpoons}}\left(\Phi_{B}, \Phi_{R \mid B}^{i j}\right)$


## Factorisation of collinear QCD emissions

Universal factorisation of QCD real emission ME in collinear limit:

$$
\mathcal{R}^{i j \text { collinear }} \mathcal{D}_{i j}^{(\mathrm{PS})}=\mathcal{B} \times\left(\sum_{\{i j\}} \frac{1}{2 p_{i} p_{j}} 8 \pi \alpha_{s} \mathcal{K}_{i j}\left(p_{i}, p_{j}\right)\right)
$$

- Sum over subterms $i j$ of the factorisation, e.g. parton lines (DGLAP)
- $\frac{1}{2 p_{i} p_{j}}$ from massless propagator

Evolution variable of shower $t \sim 2 p_{i} p_{j}$ (e.g. $k_{\perp}$, angle, $\ldots$ )

- $\mathcal{K}_{i j}$ splitting kernel for branching $\widetilde{\imath \jmath} \rightarrow i+j$

Specific form depends on scheme of the factorisation, e.g.:

- Altarelli-Parisi splitting functions
- Dipole terms from Catani-Seymour subtraction (in $N_{C} \rightarrow \infty$ )
- Antenna functions

Radiative phase space factorisation:

$$
\mathrm{d} \Phi_{R} \rightarrow \mathrm{~d} \Phi_{B} \mathrm{~d} \Phi_{R \mid B}^{i j} \stackrel{\text { e.g. }}{=} \mathrm{d} \Phi_{B} \frac{1}{16 \pi^{2}} \mathrm{~d} t \mathrm{~d} z \frac{\mathrm{~d} \phi}{2 \pi}
$$

## Differential branching probability

$$
\mathrm{d} \sigma_{\text {branch }}^{\tilde{\tau J}}=\sum_{f_{i}=q, g} \mathrm{~d} \Phi_{R \mid B}^{i j} \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}} \quad \text { (symmetry factors/PDIFs ignorad) }
$$

Differential probability for single branching of subterm $i j$ in interval $\mathrm{d} \Phi_{R \mid B}^{i j}$

## Total "survival" probability of parton ensemble

- Integrate single branching probability down to scale $t$ in terms of $t\left(\Phi_{R \mid B}^{i j}\right)$
- Assume multiple independent emissions (Poisson statistics) $\Rightarrow$ Exponentiation subterm: $\quad \Delta_{\tilde{\imath \jmath}}^{(\mathrm{PS})}(t)=1-\int \mathrm{d} \sigma_{\text {branch }}^{\tilde{\tau_{\jmath}}} \Theta\left(t\left(\Phi_{R \mid B}^{i j}\right)-t\right)+\ldots$

$$
=\exp \left\{-\sum_{f_{i}=q, g} \int \mathrm{~d} \Phi_{R \mid B}^{i j} \Theta\left(t\left(\Phi_{R \mid B}^{i j}\right)-t\right) \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}\right\}
$$

event: $\quad \Delta^{(\mathrm{PS})}(t)=\prod_{\widetilde{\imath \jmath}} \Delta_{\tilde{\imath \jmath}}^{(\mathrm{PS})}(t)$

## Cross section up to first emission in a parton shower

$$
\langle O\rangle^{(\mathrm{PS})}=\int \mathrm{d} \Phi_{B} \mathcal{B}[\underbrace{\Delta\left(t_{0}\right) O\left(\Phi_{B}\right)}_{\text {unresolved }}+\underbrace{\sum_{\tilde{\imath \jmath}} \sum_{f_{i}} \int_{t_{0}}^{\mu_{F}^{2}} \mathrm{~d} \Phi_{R \mid B}^{i j} \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}} \Delta(t) O\left(r_{\widetilde{\imath} \jmath}\left(\Phi_{B}\right)\right)}_{\text {resolved }}]
$$

## Generating events for $\langle O\rangle^{(\mathrm{PS})}$

- Generate Born ME event $\mathcal{B}$ at $\mu_{F}^{2}$
- Generate $t$ according to survival probability $\Delta(t) / \Delta\left(\mu_{F}^{2}\right)$
- Stop if $t<t_{0}$
- Generate remaining kinematics of the branching $(z, \varphi)$ according to $\mathcal{D}_{i j}^{(\mathrm{PS})} / \mathcal{B}$


## Features of $\langle O\rangle^{(\mathrm{PS})}$

- Unitarity: $\left.[\ldots]\right|_{O=1}=1$ $\Rightarrow$ LO cross section preserved
- "Unresolved" part: No emissions above cutoff $t_{0}$
- "Resolved" part:

Emission between $t_{0}$ and $\mu_{F}^{2}$ in PS approximation

## From fixed order to resummation

## Problem

- Applying PS resummation to $\mathcal{B}$ event was simple $\sqrt{\text { (for some definition of simple) }}$
- At NLO, can the same simply be done separately for $\mathcal{B}, \mathcal{V}+\mathcal{I}, \mathcal{R}-\mathcal{D}$ ?

$$
\begin{aligned}
&\langle O\rangle^{(\mathrm{NLO})}=\sum_{\overrightarrow{f_{\mathrm{B}}}} \int \mathrm{~d} \Phi_{B}\left[\mathcal{B}\left(\Phi_{B}\right)+\tilde{\mathcal{V}}\left(\Phi_{B}\right)+\sum_{\widetilde{\imath \jmath}} \mathcal{I}_{\widetilde{\imath \jmath}}^{(\mathrm{S})}\left(\Phi_{B}\right)\right] O\left(\Phi_{B}\right) \\
&+\sum_{\overrightarrow{f_{\mathrm{R}}}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right) O\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{S})}\left(\Phi_{R}\right) O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
\end{aligned}
$$

- Different observable dependence in $\mathcal{R}$ and $\mathcal{D}$ but if showered separately $\Rightarrow$ "double counting"


## Solution: Let's in the following ...

- rewrite $\langle O\rangle^{(\mathrm{NLO})}$ a bit
- add some PS resummation into the game leading to $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}$ and claim that:
- $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}=\langle O\rangle^{(\mathrm{NLO})}$ to $\mathcal{O}\left(\alpha_{s}\right)$
- $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}$ contains the first step of a PS evolution which can then be continued trivially with a regular PS
- sketch how $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}$ is being generated in Mc@NLO and POWHEG


## From fixed order to resummation

## First rewrite: Additional set of subtraction terms $\mathcal{D}^{(\mathrm{A})}$

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO})}= & \sum_{\vec{f}_{B}} \int \mathrm{~d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right) O\left(\Phi_{B}\right) \\
& +\sum_{\vec{f}_{R}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right) O\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
\end{aligned}
$$

with $\overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right)$ defined as:

$$
\begin{aligned}
& \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right)=\mathcal{B}\left(\Phi_{B}\right)+\tilde{\mathcal{V}}\left(\Phi_{B}\right)+\sum_{\{\tilde{\imath}\}} \mathcal{I}_{\tilde{\imath}}^{(\mathrm{S})}\left(\Phi_{B}\right) \\
&+\sum_{\{\tilde{\imath \jmath}\}} \sum_{f_{i}=q, g} \int \mathrm{~d} \Phi_{R \mid B}^{i j}\left[\mathcal{D}_{i j}^{(\mathrm{A})}\left(r_{\tilde{\imath \jmath}^{\prime}}\left(\Phi_{B}\right)\right)-\mathcal{D}_{i j}^{(\mathrm{S})}\left(r_{\tilde{\imath \jmath}^{\prime}}\left(\Phi_{B}\right)\right)\right]
\end{aligned}
$$

- $\mathcal{D}_{i j}^{(\mathrm{A})}$ must have same kinematics mapping as $\mathcal{D}_{i j}^{(\mathrm{S})}$
- Exact choice of $\mathcal{D}_{i j}^{(\mathrm{A})}$ will later specify Mc@NLO vs. POWHEG
- Issue with different observable kinematics not yet solved $\rightarrow$ next step


## Second rewrite: Make observable correction term explicit

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO})}= & \sum_{\vec{f}_{B}} \int \mathrm{~d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right) O\left(\Phi_{B}\right) \\
& +\sum_{\overrightarrow{f_{R}}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right)\right] O\left(\Phi_{R}\right) \\
& +\langle O\rangle^{(\mathrm{corr})}
\end{aligned}
$$

with $\langle O\rangle^{(\text {corr })}$ defined as:

$$
\langle O\rangle^{(\text {corr })}=\sum_{\vec{f}_{R}} \int \mathrm{~d} \Phi_{R} \sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right)\left[O\left(\Phi_{R}\right)-O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
$$

- Explicit correction term due to observable kinematics: $\langle O\rangle^{\text {(corr) }}$
- Essence of NLO+PS
- Ignore $\langle O\rangle^{\text {(corr) }}$ for the time being
- Apply PS resummation to first line using $\Delta^{(\mathrm{A})}$ in which $\mathcal{D}^{(\mathrm{PS})} \rightarrow \mathcal{D}^{(\mathrm{A})}$


## From fixed order to resummation

## Master formula for NLO+PS up to first emission

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}= & \sum_{\vec{f}_{B}} \int \mathrm{~d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right)[\underbrace{\Delta^{(\mathrm{A})}\left(t_{0}\right)}_{\text {unresolved }} O\left(\Phi_{B}\right) \\
& +\sum_{\{\widetilde{\imath}\}} \sum_{f_{i}} \int_{t_{0}} \mathrm{~d} \Phi_{R \mid B}^{i j} \underbrace{\frac{\mathcal{D}_{i j}^{(\mathrm{A})}\left(r_{\widetilde{\imath}}\left(\Phi_{B}\right)\right)}{\mathcal{B}\left(\Phi_{B}\right)} \Delta^{(\mathrm{A})}(t)}_{\text {resolved, singular }} O\left(r_{\widetilde{\imath \jmath}}\left(\Phi_{B}\right)\right)]
\end{aligned}
$$

- This is generated in the following way:
- Generate seed event according to first or second line of $\langle O\rangle^{(N L O)}$ on last slide
- Second line: $\mathbb{H}$-event with $\Phi_{R}$ is kept as-is $\rightarrow$ resolved, non-singular term
- First line: $\mathbb{S}$-event with $\Phi_{B}$ is processed through one-step PS with $\Delta^{(A)}$ $\Rightarrow$ emission (resolved, singular) or no emission (unresolved) above $t_{0}$
- To $\mathcal{O}\left(\alpha_{s}\right)$ this reproduces $\langle O\rangle^{(\mathrm{NLO})}$ including the correction term
- Resolved cases: Subsequent emissions can be generated by ordinary PS


## Choice of $\mathcal{D}^{(\mathrm{A})}$

- Choose the additional subtraction terms as

$$
\mathcal{D}_{i j}^{(\mathrm{A})} \rightarrow \mathcal{D}_{i j}^{(\mathrm{S})}
$$

## Comments

- $\overline{\mathcal{B}}^{(\mathrm{A})}$ simplified significantly
- Still non-trivial to implement, need either of:
- One-step PS algorithm based on subtraction terms $\mathcal{D}_{i j}^{(S)}$ ! splitting kernels can become negative $\Rightarrow \Delta>1$ !
- ME subtraction using ordinary PS kernels $\mathcal{D}_{i j}^{(P S)}$ $!$ soft divergences (subleading in $\frac{1}{N_{C}}$ ) not covered !
- In SHERPA's MC@NLO implementation:
- $\mathcal{D}^{(S)}$ from Catani-Seymour
- Weighted $N_{C}=3$ one-step PS to generate $\Delta>1$


## Original PowHEG

- Choose additional subtraction terms as

$$
\mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) \rightarrow \rho_{i j}\left(\Phi_{R}\right) \mathcal{R}\left(\Phi_{R}\right) \quad \text { where } \quad \rho_{i j}\left(\Phi_{R}\right)=\frac{\mathcal{D}_{i j}^{(\mathrm{S})}\left(\Phi_{R}\right)}{\sum_{m n} \mathcal{D}_{m n}^{(\mathrm{S})}\left(\Phi_{R}\right)}
$$

- $\mathbb{H}$-term vanishes
- $\overline{\mathcal{B}}^{(\mathrm{A})}$ remains complicated now, includes real-emission integration (may be done by Monte-Carlo method)
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)


## Mixed scheme

- Subtract arbitrary regular piece from $\mathcal{R}$ and generate separately

$$
\mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) \rightarrow \rho_{i j}\left(\Phi_{R}\right)\left[\mathcal{R}\left(\Phi_{R}\right)-\mathcal{R}^{r}\left(\Phi_{R}\right)\right] \quad \text { where } \quad \rho_{i j} \text { as above }
$$

- Allows to generate the non-singular cases of $\mathcal{R}$ without underlying $\mathcal{B}$
- More control over how much is exponentiated


## Exponentiation uncertainty

- Have to exponentiate full subtraction terms $\mathcal{D}_{i j}^{(S)}$ (MC@NLO) or even $\mathcal{R}$ (POWHEG) for NLO accuracy
- Exponent contains arbitrary terms beyond all-orders singular pieces $=$ Systematic theory uncertainty in NLO + PS
$\Rightarrow$ Studied in detail in Results later


## Renormalisation scale choice in NLO vs. PS

- First emission partly done by NLO matrix element, partly by PS
- $\alpha_{s}^{(\mathrm{NLO})}\left(\mu_{R}\right)$ taken at fixed scale
- $\alpha_{s}^{(\mathrm{PS})}\left(k_{\perp}\right)$ taken at transverse momentum of the branching (partially resums soft higher-order contributions)
$\Rightarrow$ Only noted here without solution, critical for smooth NLO $\otimes$ NLO merging


## Perturbative uncertainties

- Unknown higher-order corrections
- Estimated here by simultaneous scale variations

$$
\mu_{F}=\mu_{R}=\frac{1}{2} \mu \ldots 2 \mu
$$

$\rightsquigarrow p p \rightarrow h+$ jet later

## Non-perturbative uncertainties

- Model uncertainties in hadronisation, hadron decays, multiple parton interactions
- Estimated here by variation of parameters/models within tuned ranges
$\rightsquigarrow p p \rightarrow W+$ jet later


## Exponentiation uncertainties

- Arbitrariness of $\mathcal{D}^{(\mathrm{A})}$ and thus of the exponent in $\Delta^{(\mathrm{A})}$
- Estimated here using SHERPA by:
- Comparing Mc@NLO and POWHEG
- Using Mc@NLO with variable "dipole $\alpha_{\text {cut }}$ " restriction in $\mathcal{D}^{(S)}$ : $\alpha_{\text {cut }} \rightarrow 0$ decreases phase space for non-singular contributions


## Example setup

- $g g \rightarrow h \rightarrow \tau \tau$ at LHC with $\sqrt{s}=7 \mathrm{TeV}$ and $m_{h}=120 \mathrm{GeV}, \mu=m_{h}$
- Analysed with $p_{\perp}^{\tau}>25 \mathrm{GeV}$ and $\left|n^{\tau}\right|<3.5$
- Jets defined using inclusive $k_{\perp}$ with $R=0.7$ and $p_{\perp}>20 \mathrm{GeV}$


## Studies at parton shower level

1. Validate NLO+PS against fixed NLO predictions
2. Comparison with LO parton shower ( $\mathrm{LO}+\mathrm{PS}$ )
3. Mc@Nlo vs. POWHEG
4. Mc@NLO with $0.001 \leq \alpha_{\text {cut }} \leq 1$ variation
$\Rightarrow$ Very busy plots
(SORRY!)


- Surprising result: Huge NLO+PS uncertainties especially at large $p_{\perp}^{\mathrm{h}}$
- POWHEG and unrestricted MC@NLO similar
- Decreasing exponentiation of non-singular pieces with $\alpha_{\text {cut }} \lesssim 0.01$ recovers NLO behaviour
- Resummation region $p_{\perp}^{\mathrm{h}} \rightarrow 0$ strongly affected by $\alpha_{\text {cut }}$ variation: side effect of imperfect functional form of $\alpha$ (vs. parton shower $t \sim k_{\perp}^{2}$ )

Exponentiation uncertainties in the example of $g g \rightarrow h$


- Predictions separated by $\mathbb{H}$ and $\mathbb{S}$ events for illustration purposes

- Predictions much more stable for $y_{h}$ than for $p_{\perp}^{h}$
- Observable already exists at LO, thus described at NLO here

- Large uncertainties for $\Delta y(h, j)$
- Interesting dip structure in Mc@NLO due to cuts on exponentiated phase space Surprisingly similar to effect from dead zones in Mc@NLO with HERWIG


## Example setup

- $p p \rightarrow h[\rightarrow \tau \tau]+$ jet at LHC with $\sqrt{s}=7 \mathrm{TeV}$ and $m_{h}=120 \mathrm{GeV}, \mu=p_{\perp}^{j_{\text {lead }}}$
- Virtual matrix element interfaced from MCFM
- Generated ME level with $p_{\perp}>10 \mathrm{GeV}$ for inclusive $k_{\perp}$ jets with $R=0.5$
- Analysed with $p_{\perp}^{\tau}>25 \mathrm{GeV}$ and $\left|n^{\tau}\right|<3.5$, jets defined using inclusive $k_{\perp}$ with $R=0.7$ and $p_{\perp}>20 \mathrm{GeV}$


## Studies

- Includes hadronisation, hadron decays, multiple parton interactions (MPI), QED corrections to $h \rightarrow \tau \tau$ decay
- Scale uncertainty band (yellow) from $\mu_{F}=\mu_{R}=\frac{1}{2} \mu \ldots 2 \mu$
- Exponentiation uncertainty band (gray) from $\alpha_{\text {cut }}=0.001 \ldots 1$


- Despite NLO accuracy, large exponentiation uncertainty for large $p_{\perp}$ :
- Large influence from higher-order corrections in $\Delta$ where more phase space is exponentiated
- Additional distortion from scale difference for real-emission: relative $p_{\perp}$ of partons vs. $p_{\perp}$ against beam


- Milder exponentiation variations in $\Delta \eta(\mathrm{h}, \mathrm{jet})$, mainly normalisation due to larger emission rates with $\alpha_{\text {cut }} \rightarrow 1$
- $\Delta \phi$ (jet 1, jet 2): Back-to-back situation amplified due to harder radiation


## Example setup

- $p p \rightarrow W[\rightarrow e \nu]+$ jet at LHC with $\sqrt{s}=7 \mathrm{TeV}, \mu=p_{\perp}^{j_{\text {lead }}}$
- Virtual matrix element interfaced from BlackHat
- Exponentiation level fixed at $\alpha_{\text {cut }}=0.03$
- Generated ME level with $p_{\perp}>10 \mathrm{GeV}$ for inclusive $k_{\perp}$ jets with $R=0.5$
- Analysed jets with $p_{\perp}>20 \mathrm{GeV}$ for inclusive $k_{\perp}$ jets with $R=0.7$


## Non-perturbative effects

```
"Parton Level"
    Only seed event + first emission off S-events in Mc@NLO
"Shower Level"
    PL + all QCD emissions in the parton shower and QED emissions in the YFS
    approach
"Shower+MPI"
    SL + multiple parton interactions and intrinsic }\mp@subsup{p}{\perp}{}\mathrm{ of the beam hadron
"Hadron Level"
    Additionally, hadronisation and hadron decays are included
```



- Properties of the $W$-boson virtually unaffected


- Jet properties changed significantly by non-perturbative effects
- Hadronisation and MPI partially compensate each other, depends on jet algorithm
$\Rightarrow$ How large is the uncertainty?


- Probe hadronisation uncertainties by switching from SHERPA default cluster fragmentation to Lund string
- Differences negligible for all jet observables studied, except the specifically sensitive jet mass


## Comparison to data for $W+$ jet production





- Comparison to ATLAS data (arXiv:1012.5382): Good agreement in shape, discrepancies in jet rates
- Especially two/three jet rates too low: Only predicted at LO/PS
- MPI parameter variations plotted as yellow band $\Rightarrow$ negligible


## Example setup

- $p p \rightarrow Z+$ jet at Tevatron with $\sqrt{s}=1.96 \mathrm{TeV}, \mu=p_{\perp}^{j_{\text {lead }}}$
- Virtual matrix element interfaced from BlackHat
- Exponentiation level fixed at $\alpha_{\text {cut }}=0.03$
- Generated ME level with $p_{\perp}>10 \mathrm{GeV}$ for inclusive $k_{\perp}$ jets with $R=0.5$


## Tevatron analyses

- CDF $Z+$ jets arXiv:0711.3717
- DØ Z+jet arXiv:0808.1296
- DØ Z+jets arXiv:0903.1748
- DØ Z+jet arXiv:0907.4286


## Comparison to data for $Z+$ jet production




- $Z$-boson properties in $Z+$ jet+X production
- Fair agreement, $10 \%$ rate deficiency
- MPI uncertainties largest at low $p_{\perp}(\mathrm{Z})$


## Comparison to data for $Z+$ jet production





- One-jet-rate too low by 10-20\%
- Not conclusive on shape of leading jet $p_{\perp}$
- Reminder: Large exponentiation uncertainties


## Comparison to data for $Z+$ jet production





- Angular correlations of $Z$-boson and leading jet
- Shape of rapidity distributions matched fairly well
- Significant deviations for azimuthal correlation:

Back-to-back works, but $\Delta \phi<\pi$ is underestimated.
That region is generated by emissions beyond the first one $\Rightarrow$ only LO/PS accuracy

## Summary

- NLO+PS matching was presented in common formalism
- POWHEG and Mc@NLO developed as special cases
- Uncertainties from exponentiation ambiguities are large but understood
- Scale and non-perturbative uncertainties relatively small
- First NLO+PS predictions for $h+$ jet
- $W / Z+$ jet compared to experimental data


## Outlook

- Improved functional form of dipole $\alpha$ could allow for better limitation of exponentation
- Merging NLO+PS with higher-multiplicity tree-level MEs can provide better description of multi-jet final states ( $\rightarrow$ e.g. MENLOPS)
- Ultimate goal: Merging of NLO at different multiplicities + parton shower

