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Motivation for NLO+PS matching

Two approaches to higher-order corrections

Fixed order ME calculation

+ Exact to fixed order

+ Includes all interferences

+ NC = 3 (summed or sampled)

+ Includes virtual contributions

− Perturbation breaks down in
logarithmically enhanced regions

− Only low FS multiplicity

Parton Shower

+ Resums logarithmically enhanced
contributions to all orders

+ High-multiplicity final state

+ Allows for exclusive hadron-level events

− Only approximation for emission ME

− Large NC limit

⇓

Goal: Combine advantages

I Include virtual contributions and first hard emission from NLO ME
I Add further parton evolution with the PS
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Resummation in parton showers

Factorisation of collinear QCD emissions

I Universal factorisation of QCD real emission ME in collinear limit:

R ij collinear−→ D(PS)
ij = B ×

(
1

2pipj
8παs Kij(pi, pj)

)

I Differential branching probability: dσı̃branch =
∑
fi=q,g

dΦij
R|B(t, z, ϕ)

D(PS)
ij
B

I Assume multiple independent emissions (Poisson statistics)⇒ Exponentiation yields total
no-branching probability down to evolution scale t:

∆
(PS)

(t) =
∏
ı̃

[
1−

∫
dσ
ı̃
branch Θ

(
t(Φ

ij
R|B)− t

)
+ . . .

]

=
∏
ı̃

exp

− ∑
fi=q,g

∫
dΦ

ij
R|B Θ

(
t(Φ

ij
R|B)− t

) D(PS)
ij

B


Expectation value of observableO up to first emission

〈O〉(PS)
=

∫
dΦB B

[
∆

(PS)
(t0)O(ΦB)︸ ︷︷ ︸

unresolved

+
∑
ı̃

∑
fi

∫ µ2
F

t0

dΦ
ij
R|B

D(PS)
ij

B
∆

(PS)
(t)O

(
rı̃(ΦB)

)
︸ ︷︷ ︸

resolved

]
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Fixed order NLO calculations

Reminder + Notation: Subtraction method

I Contributions to NLO cross section: Born, Virtual andReal emission
I V andR divergent in separate phase space integrations
⇒ Subtraction method for expectation value of observable O at NLO:

〈O〉(NLO) =
∑
~fB

∫
dΦB

B(ΦB) + Ṽ(ΦB) +
∑
ı̃

I(S)
ı̃

(ΦB)

 O(ΦB)

+
∑
~fR

∫
dΦR

R(ΦR)O(ΦR)−
∑
{ij}
D(S)

ij (ΦR)O(bij(ΦR))


I Subtraction terms D and their integrated form I

e.g. Frixione, Kunszt, Signer (1995); Catani, Seymour (1996)

I Subtraction defines phase space mappings ΦR

bij


rı̃

(
ΦB ,Φ

ij
R|B

)
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From fixed order to resummation

Problem

I Applying PS resummation to LO event is simpleX
I Can the same simply be done separately for B and V + I andR−D at NLO?

〈O〉(NLO)
=
∑
~fB

∫
dΦB

B(ΦB) + Ṽ(ΦB) +
∑
ı̃

I(S)
ı̃

(ΦB)

 O(ΦB)

+
∑
~fR

∫
dΦR

R(ΦR)O(ΦR)−
∑
{ij}
D(S)
ij (ΦR)O(bij(ΦR))


I Different observable dependence inR andD

but if showered separately⇒ “double counting” %

Solution: Let’s in the following . . .

Frixione, Webber (2002)
I rewrite 〈O〉(NLO) a bit
I add PS resummation into the game leading to 〈O〉(NLO+PS) and claim that:

I 〈O〉(NLO+PS) = 〈O〉(NLO) toO(αs)
I 〈O〉(NLO+PS) contains the first step of a PS evolution which can then be continued

trivially with a regular PS

I sketch how 〈O〉(NLO+PS) is being generated in MC@NLO formalism
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From fixed order to resummation

First rewrite: Additional set of subtraction terms D(A)

〈O〉(NLO)
=
∑
~fB

∫
dΦB B̄(A)

(ΦB)O(ΦB)

+
∑
~fR

∫
dΦR

R(ΦR)O(ΦR)−
∑
{ij}

D(A)
ij (ΦR)O (bij(ΦR))


with B̄(A)(ΦB) defined as:

B̄(A)
(ΦB) =B(ΦB) + Ṽ(ΦB) +

∑
{ı̃}

I(S)
ı̃

(ΦB)

+
∑
{ı̃}

∑
fi=q,g

∫
dΦ

ij
R|B

[
D(A)
ij (rı̃(ΦB))−D(S)

ij (rı̃(ΦB))
]

I D(A)
ij must have same kinematics mapping as D(S)

ij

I Exact choice of D(A)
ij will specify e.g. MC@NLO vs. POWHEG

I Issue with different observable kinematics not yet solved→ next step
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From fixed order to resummation

Second rewrite: Make observable correction term explicit

〈O〉(NLO)
=
∑
~fB

∫
dΦB B̄(A)

(ΦB)O(ΦB)

+
∑
~fR

∫
dΦR

R(ΦR)−
∑
{ij}

D(A)
ij (ΦR)

 O(ΦR)

+ 〈O〉(corr)

with 〈O〉(corr) defined as:

〈O〉(corr)
=
∑
~fR

∫
dΦR

∑
{ij}

D(A)
ij (ΦR)

[
O(ΦR)−O(bij(ΦR))

]

I Explicit correction term due to observable kinematics: 〈O〉(corr)

I Essence of NLO+PS
I Ignore 〈O〉(corr) for the time being
I Apply PS resummation to first line using ∆(A) in whichD(PS) → D(A)
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From fixed order to resummation

Master formula for NLO+PS up to first emission

〈O〉(NLO+PS)
=
∑
~fB

∫
dΦB B̄(A)

(ΦB)

 ∆
(A)

(t0)︸ ︷︷ ︸
unresolved

O(ΦB)

+
∑
{ı̃}

∑
fi

∫
t0

dΦ
ij
R|B

D(A)
ij (rı̃(ΦB))

B(ΦB)
∆

(A)
(t)︸ ︷︷ ︸

resolved, singular

O(rı̃(ΦB))



+
∑
~fR

∫
dΦR

R(ΦR)−
∑
ij

D(A)
ij (ΦR)


︸ ︷︷ ︸

resolved, non-singular

O(ΦR)

I This is generated in the following way:
I Generate seed event according to first or second line of 〈O〉(NLO) on last slide
I Second line: H-event with ΦR is kept as-is→ resolved, non-singular term
I First line: S-event with ΦB is processed through one-step PS with ∆(A)

⇒ emission (resolved, singular) or no emission (unresolved) above t0
I ToO(αs) this reproduces 〈O〉(NLO) including the correction term
I Resolved cases: Subsequent emissions can be generated by ordinary PS
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Special case: MC@NLO

Two Options:

Original MC@NLO

Frixione, Webber (2002)

Choose the parton shower splitting kernels as
additional subtraction terms:

D(A)
ij → D

(PS)
ij

I Exponentiation in “resolved, singular”
contribution is naturally bounded by µF

I Problems with soft divergences in
“resolved, non-singular” integration∫

dΦR

R(ΦR)−
∑
ij

D(PS)
ij (ΦR)


I Workaround: SupplementD(PS) with

“soft suppression function” G
I Since G is not exponentiated, NLO

accuracy breaks down for sub-leading
colour configurations

SHERPA’s variant

Höche, Krauss, Schönherr, FS (2011)

Choose the full Catani-Seymour dipoles as
additional subtraction terms:

D(A)
ij → D

(S)
ij

I B̄(A) simplified significantly

I D(S) can become negative⇒∆ > 1

I Generated in Sherpa by weightedNC = 3
one-step PS based on subtraction terms
D(S)

I Exact NLO accuracy also for sub-leading
colour configurations

I Phase space boundary for exponentiation
is imposed by cuts in dipole terms
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Results for W + n-jet production at the LHC (arXiv:1201.5882)

Event generation setup

I SHERPA’s MC@NLO forW + 0,W + 1,
W + 2 andW + 3-jet production

I Virtual corrections from BLACKHAT,
leading-colour approximation for the
W + 3-jet virtual

I For n > 0 regularise requiring kT jets
with p⊥ > 10 GeV

I Exponentiation region restricted using
α = 0.01-cut in dipole terms Nagy (2003)

(cf. outlook)

I CTEQ6.6 NLO PDF

I µR = µF = 1/2 Ĥ′T , where

Ĥ′T =
√∑

p2
T,j + E2

T,W .

I Three levels of event simulation:

“NLO” Fixed-order
“MC@NLO 1em” MC@NLO including

hardest emission
“MC@NLO PL” MC@NLO including

full PS

Analysis setup

I Comparing to ATLAS W+jets
measurement arXiv:1201.1276

I Using implementation in Rivet arXiv:1003.0694

I Lepton with p⊥ > 20 GeV, |η| < 2.5

I Emiss
T > 25 GeV

I mW
T > 40 GeV

I Anti-kt jets withR = 0.4 and
p⊥ > 30 GeV
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Results for W + n-jet production at the LHC (arXiv:1201.5882)

Jet multiplicities

W±+ ≥ n jets ATLAS NLO MC@NLO 1em MC@NLO PL

n = 0 5.2± 0.2 5.06(1) 5.09(3) 5.06(3)

n = 1, p⊥ j > 20 GeV 0.95± 0.10 0.958(5) 0.968(10) 0.889(10)
p⊥ j > 30 GeV 0.54± 0.05 0.527(4) 0.534(7) 0.474(7)

n = 2, p⊥ j > 20 GeV 0.26± 0.04 0.263(2) 0.260(5) 0.236(4)
p⊥ j > 30 GeV 0.12± 0.02 0.120(1) 0.123(2) 0.109(2)

n = 3, p⊥ j > 20 GeV 0.068± 0.014 0.072(3) 0.059(3) 0.060(3)
p⊥ j > 30 GeV 0.026± 0.005 0.026(1) 0.022(2) 0.021(1)
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Results for W + n-jet production at the LHC (arXiv:1201.5882)

Transverse momenta of jets
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Transverse momentum of the first, second and third jet (from top to bottom) inW±+ ≥ 1, 2, 3 jet
production as measured by ATLAS compared to predictions from the corresponding fixed order

and MC@NLO simulations.
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Results for W + n-jet production at the LHC (arXiv:1201.5882)

Angular correlations of leading jets
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Angular correlations of the two leading jets inW±+ ≥ 2 jet production as measured by ATLAS
compared to predictions from theW± + 2 jet fixed order and MC@NLO simulations.
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Conclusions

Summary

I NLO+PS matching was presented in common formalism
I MC@NLO developed as special case
I Colour-correctness achieved by exponentiating Catani-Seymour subtraction terms
I First NLO+PS predictions for W+3 jets
I Good agreement with experimental data from ATLAS

Outlook

I Improved functional form of dipole cut α will allow for better limitation of
exponentiation region

I Merging NLO+PS with higher-multiplicity tree-level MEs can provide better
description of multi-jet final states (→ e.g. MENLOPS)

I Ultimate goal: Merging of NLO at different multiplicities + parton shower
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Backup



Special case: POWHEG

Original POWHEG

I Choose additional subtraction terms as

D(A)
ij (ΦR)→ ρij(ΦR)R(ΦR) where ρij(ΦR) =

D(S)
ij (ΦR)∑

mnD
(S)
mn(ΦR)

I H-term vanishes
I B̄(A) remains complicated now, includes real-emission integration

(may be done by Monte-Carlo method)
I Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

I Subtract arbitrary regular piece fromR and generate separately

D(A)
ij (ΦR)→ ρij(ΦR) [R(ΦR)−Rr(ΦR)] where ρij as above

I Allows to generate the non-singular cases ofRwithout underlying B
I More control over how much is exponentiated
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