W+n-jet predictions at NLO matched with a parton shower

DIS 2012, Bonn

Frank Siegert

Albert-Ludwigs-Universität Freiburg

Based on

- arXiv:1111.1220 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1201.5882 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)

Two approaches to higher-order corrections

Fixed order ME calculation

- + Exact to fixed order
- + Includes all interferences
- + $N_C = 3$ (summed or sampled)
- + Includes virtual contributions
- Perturbation breaks down in logarithmically enhanced regions
- Only low FS multiplicity

Parton Shower

- + Resums logarithmically enhanced contributions to all orders
- + High-multiplicity final state
- + Allows for exclusive hadron-level events
- Only approximation for emission ME
- Large N_C limit

∜

Goal: Combine advantages

- Include virtual contributions and first hard emission from NLO ME
- Add further parton evolution with the PS

Factorisation of collinear QCD emissions

Universal factorisation of QCD real emission ME in collinear limit:

$$\mathcal{R} \xrightarrow{ij \text{ collinear }} \mathcal{D}_{ij}^{(\text{PS})} = \mathcal{B} \times \left(\frac{1}{2p_i p_j} \ 8\pi \alpha_s \ \mathcal{K}_{ij}(p_i, p_j)\right)$$

- Differential branching probability: $d\sigma_{\text{branch}}^{\tilde{i}j} = \sum_{f_i=q,g} d\Phi_{R|B}^{ij}(t,z,\varphi) \frac{\mathcal{D}_{ij}^{(\text{PS})}}{\mathcal{B}}$
- ► Assume multiple independent emissions (Poisson statistics) ⇒ Exponentiation yields total no-branching probability down to evolution scale *t*:

$$\begin{split} \Delta^{(\mathrm{PS})}(t) &= \prod_{ij} \left[1 - \int \mathrm{d}\sigma^{ij}_{\mathrm{branch}} \Theta\left(t(\Phi^{ij}_{R|B}) - t\right) + \dots \right] \\ &= \prod_{ij} \exp\left\{ -\sum_{f_i=q,g} \int \mathrm{d}\Phi^{ij}_{R|B} \Theta\left(t(\Phi^{ij}_{R|B}) - t\right) \; \frac{\mathcal{D}^{(\mathrm{PS})}_{ij}}{\mathcal{B}} \right\} \end{split}$$

Expectation value of observable \mathcal{O} up to first emission

$$\langle O \rangle^{(\mathrm{PS})} = \int \mathrm{d}\Phi_B \, \mathcal{B}\left[\underbrace{\Delta^{(\mathrm{PS})}(t_0) \, O(\Phi_B)}_{\text{unresolved}} + \underbrace{\sum_{\tilde{i}\tilde{j}} \sum_{f_i} \int_{t_0}^{\mu_F^2} \mathrm{d}\Phi_{R|B}^{ij} \frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}} \Delta^{(\mathrm{PS})}(t) \, O\left(r_{\tilde{i}\tilde{j}}(\Phi_B)\right)}_{\text{unresolved}}\right]$$

Reminder + Notation: Subtraction method

- Contributions to NLO cross section: Born, Virtual and Real emission
- V and R divergent in separate phase space integrations ⇒ Subtraction method for expectation value of observable O at NLO:

$$\langle O \rangle^{(\text{NLO})} = \sum_{\tilde{f}_{B}} \int d\Phi_{B} \left[\mathcal{B}(\Phi_{B}) + \tilde{\mathcal{V}}(\Phi_{B}) + \sum_{\tilde{i}j} \mathcal{I}_{\tilde{i}j}^{(\text{S})}(\Phi_{B}) \right] O(\Phi_{B})$$

$$+ \sum_{\tilde{f}_{R}} \int d\Phi_{R} \left[\mathcal{R}(\Phi_{R}) O(\Phi_{R}) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{S})}(\Phi_{R}) O(b_{ij}(\Phi_{R})) \right]$$

- Subtraction terms D and their integrated form I
 e.g. Frixione, Kunszt, Signer (1995); Catani, Seymour (1996)
- Subtraction defines phase space mappings $\Phi_R \xrightarrow[r_{ij}]{b_{ij}} \left(\Phi_B, \Phi_{R|B}^{ij} \right)$

From fixed order to resummation

Problem

- Applying PS resummation to LO event is simple \checkmark
- ► Can the same simply be done separately for B and V + I and R D at NLO?

$$\begin{split} \langle O \rangle^{(\mathrm{NLO})} &= \sum_{\tilde{f}_{\mathrm{B}}} \int \mathrm{d}\Phi_B \left[\mathcal{B}(\Phi_B) + \tilde{\mathcal{V}}(\Phi_B) + \sum_{\tilde{i}j} \mathcal{I}_{\tilde{i}j}^{(\mathrm{S})}(\Phi_B) \right] O(\Phi_B) \\ &+ \sum_{\tilde{f}_{\mathrm{R}}} \int \mathrm{d}\Phi_R \left[\mathcal{R}(\Phi_R) O(\Phi_R) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\mathrm{S})}(\Phi_R) O(b_{ij}(\Phi_R)) \right] \right] \end{split}$$

Different observable dependence in *R* and *D* but if showered separately ⇒ "double counting"

Solution: Let's in the following ...

- rewrite $\langle O \rangle^{(\text{NLO})}$ a bit
- ▶ add PS resummation into the game leading to $\langle O \rangle^{(\rm NLO+PS)}$ and claim that:
 - $\langle O \rangle^{(\text{NLO}+\text{PS})} = \langle O \rangle^{(\text{NLO})}$ to $\mathcal{O}(\alpha_s)$
 - (O)^(NLO+PS) contains the first step of a PS evolution which can then be continued trivially with a regular PS
- ▶ sketch how (O)^(NLO+PS) is being generated in MC@NLO formalism

Frixione, Webber (2002)

First rewrite: Additional set of subtraction terms $\mathcal{D}^{(A)}$

$$\begin{split} \langle O \rangle^{(\text{NLO})} &= \sum_{\vec{f}_B} \int \mathrm{d}\Phi_B \, \vec{\mathcal{B}}^{(\text{A})}(\Phi_B) \, O(\Phi_B) \\ &+ \sum_{\vec{f}_R} \int \mathrm{d}\Phi_R \, \left[\mathcal{R}(\Phi_R) \, O(\Phi_R) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})}(\Phi_R) \, O\left(b_{ij}(\Phi_R)\right) \right] \end{split}$$

with $\bar{\mathcal{B}}^{(A)}(\Phi_B)$ defined as:

$$\begin{split} \bar{\mathcal{B}}^{(\mathrm{A})}(\Phi_B) &= \mathcal{B}(\Phi_B) + \tilde{\mathcal{V}}(\Phi_B) + \sum_{\{\tilde{\imath}j\}} \mathcal{I}^{(\mathrm{S})}_{\tilde{\imath}j}(\Phi_B) \\ &+ \sum_{\{\tilde{\imath}j\}} \sum_{f_i = q,g} \int \mathrm{d}\Phi^{ij}_{R|B} \left[\mathcal{D}^{(\mathrm{A})}_{ij}(r_{\tilde{\imath}j}(\Phi_B)) - \mathcal{D}^{(\mathrm{S})}_{ij}(r_{\tilde{\imath}j}(\Phi_B)) \right] \end{split}$$

- $\mathcal{D}_{ij}^{(\mathrm{A})}$ must have same kinematics mapping as $\mathcal{D}_{ij}^{(\mathrm{S})}$
- Exact choice of $\mathcal{D}_{ij}^{(A)}$ will specify e.g. MC@NLO vs. POWHEG
- $\blacktriangleright\,$ Issue with different observable kinematics not yet solved $\rightarrow\,$ next step

Second rewrite: Make observable correction term explicit

$$\langle O \rangle^{(\text{NLO})} = \sum_{\vec{f}_B} \int d\Phi_B \, \bar{\mathcal{B}}^{(\text{A})}(\Phi_B) \, O(\Phi_B)$$

$$+ \sum_{\vec{f}_R} \int d\Phi_R \, \left[\mathcal{R}(\Phi_R) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})}(\Phi_R) \right] \, O(\Phi_R)$$

$$+ \langle O \rangle^{(\text{corr})}$$

with $\langle O \rangle^{(\text{corr})}$ defined as:

$$\langle O \rangle^{(\text{corr})} = \sum_{\vec{f}_R} \int d\Phi_R \sum_{\{ij\}} \mathcal{D}_{ij}^{(A)}(\Phi_R) \left[O(\Phi_R) - O(b_{ij}(\Phi_R)) \right]$$

- Explicit correction term due to observable kinematics: $\langle O \rangle^{(\text{corr})}$
- Essence of NLO+PS
 - Ignore $\langle O \rangle^{(\text{corr})}$ for the time being
 - Apply PS resummation to first line using $\Delta^{(A)}$ in which $\mathcal{D}^{(PS)} \to \mathcal{D}^{(A)}$

Master formula for NLO+PS up to first emission

$$\begin{split} \langle O \rangle^{(\mathrm{NLO}+\mathrm{PS})} &= \sum_{\vec{f}_B} \int \mathrm{d}\Phi_B \, \vec{\mathcal{B}}^{(\mathrm{A})}(\Phi_B) \left[\underbrace{\Delta^{(\mathrm{A})}(t_0)}_{\mathrm{unresolved}} O(\Phi_B) \\ &+ \sum_{\{\vec{i}j\}} \sum_{f_i} \int_{t_0} \mathrm{d}\Phi^{ij}_{R|B} \underbrace{\frac{\mathcal{D}^{(\mathrm{A})}_{ij}(r_{\vec{i}j}(\Phi_B))}{\mathcal{B}(\Phi_B)} \Delta^{(\mathrm{A})}(t)}_{\mathrm{resolved, singular}} O(r_{\vec{i}j}(\Phi_B)) \right] \\ &+ \sum_{\vec{f}_R} \int \mathrm{d}\Phi_R \underbrace{\left[\mathcal{R}(\Phi_R) - \sum_{ij} \mathcal{D}^{(\mathrm{A})}_{ij}(\Phi_R) \right]} O(\Phi_R) \end{split}$$

resolved, non-singular

- This is generated in the following way:
 - Generate seed event according to first or second line of $\langle O \rangle^{(\text{NLO})}$ on last slide
 - Second line: \mathbb{H} -event with Φ_R is kept as-is \rightarrow resolved, non-singular term
 - First line: S-event with Φ_B is processed through one-step PS with Δ^(A) ⇒ emission (resolved, singular) or no emission (unresolved) above t₀
- To $\mathcal{O}(\alpha_s)$ this reproduces $\langle O \rangle^{(\text{NLO})}$ including the correction term
- Resolved cases: Subsequent emissions can be generated by ordinary PS

Two Options:

Original MC@NLO

Frixione, Webber (2002)

Choose the parton shower splitting kernels as additional subtraction terms:

 $\mathcal{D}_{ij}^{(\mathrm{A})} \to \mathcal{D}_{ij}^{(\mathrm{PS})}$

- Exponentiation in "resolved, singular" contribution is naturally bounded by μ_F
- Problems with soft divergences in "resolved, non-singular" integration

$$\int \mathrm{d}\Phi_R \left[\mathcal{R}(\Phi_R) - \sum_{ij} \mathcal{D}_{ij}^{(\mathrm{PS})}(\Phi_R) \right]$$

- Workaround: Supplement D^(PS) with "soft suppression function" G
- Since G is not exponentiated, NLO accuracy breaks down for sub-leading colour configurations

SHERPA's variant

Höche, Krauss, Schönherr, FS (2011)

Choose the full Catani-Seymour dipoles as additional subtraction terms:

 $\mathcal{D}_{ij}^{(\mathrm{A})} \to \mathcal{D}_{ij}^{(\mathrm{S})}$

- \$\bar{B}^{(A)}\$ simplified significantly
- $\mathcal{D}^{(S)}$ can become negative $\Rightarrow \Delta > 1$
- Generated in Sherpa by weighted N_C = 3 one-step PS based on subtraction terms D^(S)
- Exact NLO accuracy also for sub-leading colour configurations
- Phase space boundary for exponentiation is imposed by cuts in dipole terms

Event generation setup

- SHERPA's MC@NLO for W + 0, W + 1, W + 2 and W + 3-jet production
- ► Virtual corrections from BLACKHAT, leading-colour approximation for the W + 3-jet virtual
- For n > 0 regularise requiring k_T jets with p_⊥ > 10 GeV
- Exponentiation region restricted using $\alpha = 0.01$ -cut in dipole terms Nagy (2003) (cf. outlook)
- CTEQ6.6 NLO PDF
- $\mu_R = \mu_F = 1/2 \, \hat{H}'_T$, where $\hat{H}'_T = \sqrt{\sum p_{T,j}^2 + E_{T,W}^2}$.
- Three levels of event simulation:

Analysis setup

- Comparing to ATLAS W+jets measurement arXiv:1201.1276
- Using implementation in Rivet arXiv:1003.0694
- Lepton with $p_{\perp} > 20$ GeV, $|\eta| < 2.5$
- ▶ $E_T^{\text{miss}} > 25 \text{ GeV}$
- ▶ $m_{\mathrm{T}}^{\mathrm{W}} > 40 \, \mathrm{GeV}$
- Anti- k_t jets with R = 0.4 and $p_{\perp} > 30 \text{ GeV}$

Jet multiplicities

$W^{\pm} + \ge n$ jets	ATLAS	NLO	MC@NLO 1em	MC@NLO PL
n = 0	5.2 ± 0.2	5.06(1)	5.09(3)	5.06(3)
$n = 1, p_{\perp j} > 20 \text{GeV}$	0.95 ± 0.10	0.958(5)	0.968(10)	0.889(10)
$p_{\perp j} > 30 \text{GeV}$	0.54 ± 0.05	0.527(4)	0.534(7)	0.474(7)
$n = 2, p_{\perp j} > 20 \text{GeV}$	0.26 ± 0.04	0.263(2)	0.260(5)	0.236(4)
$p_{\perp j} > 30 \text{GeV}$	0.12 ± 0.02	0.120(1)	0.123(2)	0.109(2)
$n = 3, p_{\perp j} > 20 \text{GeV}$	0.068 ± 0.014	0.072(3)	0.059(3)	0.060(3)
$p_{\perp j} > 30 \text{GeV}$	0.026 ± 0.005	0.026(1)	0.022(2)	0.021(1)

Transverse momenta of jets

Transverse momentum of the first, second and third jet (from top to bottom) in $W^{\pm} + \ge 1, 2, 3$ jet production as measured by ATLAS compared to predictions from the corresponding fixed order and MC@NLO simulations.

Angular correlations of leading jets

Angular correlations of the two leading jets in $W^{\pm} + \geq 2$ jet production as measured by ATLAS compared to predictions from the $W^{\pm} + 2$ jet fixed order and MC@NLO simulations.

Summary

- NLO+PS matching was presented in common formalism
- MC@NLO developed as special case
- Colour-correctness achieved by exponentiating Catani-Seymour subtraction terms
- ▶ First NLO+PS predictions for W+3 jets
- Good agreement with experimental data from ATLAS

Outlook

- Improved functional form of dipole cut α will allow for better limitation of exponentiation region
- ▶ Merging NLO+PS with higher-multiplicity tree-level MEs can provide better description of multi-jet final states (→ e.g. MENLOPS)
- Ultimate goal: Merging of NLO at different multiplicities + parton shower

Backup

Original POWHEG

Choose additional subtraction terms as

$$\rho_{ij}^{(A)}(\Phi_R) \to \rho_{ij}(\Phi_R) \mathcal{R}(\Phi_R) \quad \text{where} \quad \rho_{ij}(\Phi_R) = \frac{\mathcal{D}_{ij}^{(S)}(\Phi_R)}{\sum_{mn} \mathcal{D}_{mn}^{(S)}(\Phi_R)}$$

- Ill-term vanishes
- ▶ B^(A) remains complicated now, includes real-emission integration (may be done by Monte-Carlo method)
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

 \blacktriangleright Subtract arbitrary regular piece from ${\cal R}$ and generate separately

$$\mathcal{D}_{ij}^{(A)}(\Phi_R) \to \rho_{ij}(\Phi_R) \ [\mathcal{R}(\Phi_R) - \mathcal{R}^r(\Phi_R)] \qquad \text{where} \qquad \rho_{ij} \text{ as above}$$

- ► Allows to generate the non-singular cases of *R* without underlying *B*
- More control over how much is exponentiated