W+n-jet predictions at NLO matched with a parton shower

DIS 2012, Bonn
Frank Siegert

Based on

- arXiv:1111.1220 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1201.5882 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)

Two approaches to higher-order corrections

Fixed order ME calculation

+ Exact to fixed order
+ Includes all interferences
$+N_{C}=3$ (summed or sampled)
+ Includes virtual contributions
- Perturbation breaks down in logarithmically enhanced regions

Parton Shower

+ Resums logarithmically enhanced contributions to all orders
+ High-multiplicity final state
+ Allows for exclusive hadron-level events
- Only approximation for emission ME
- Large N_{C} limit
- Only low FS multiplicity

$$
\Downarrow
$$

Goal: Combine advantages

- Include virtual contributions and first hard emission from NLO ME
- Add further parton evolution with the PS

Factorisation of collinear QCD emissions

- Universal factorisation of QCD real emission ME in collinear limit:

$$
\mathcal{R}^{i j} \xrightarrow{\text { collinear }} \mathcal{D}_{i j}^{(\mathrm{PS})}=\mathcal{B} \times\left(\frac{1}{2 p_{i} p_{j}} 8 \pi \alpha_{s} \mathcal{K}_{i j}\left(p_{i}, p_{j}\right)\right)
$$

- Differential branching probability: $\mathrm{d} \sigma_{\text {branch }}^{\tilde{\tau J}}=\sum_{f_{i}=q, g} \mathrm{~d} \Phi_{R \mid B}^{i j}(t, z, \varphi) \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}$
- Assume multiple independent emissions (Poisson statistics) \Rightarrow Exponentiation yields total no-branching probability down to evolution scale t :

$$
\begin{aligned}
\Delta^{(\mathrm{PS})}(t) & =\prod_{\widetilde{\imath \jmath}}\left[1-\int \mathrm{d} \sigma_{\text {branch }}^{\tilde{\imath \jmath}} \Theta\left(t\left(\Phi_{R \mid B}^{i j}\right)-t\right)+\ldots\right] \\
& =\prod_{\widetilde{\imath \jmath}} \exp \left\{-\sum_{f_{i}=q, g} \int \mathrm{~d} \Phi_{R \mid B}^{i j} \Theta\left(t\left(\Phi_{R \mid B}^{i j}\right)-t\right) \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}\right\}
\end{aligned}
$$

Expectation value of observable \mathcal{O} up to first emission

$$
\langle O\rangle^{(\mathrm{PS})}=\int \mathrm{d} \Phi_{B} \mathcal{B}[\underbrace{\Delta^{(\mathrm{PS})}\left(t_{0}\right) O\left(\Phi_{B}\right)}_{\text {unresolved }}+\underbrace{\sum_{\widetilde{\imath \jmath}} \sum_{f_{i}} \int_{t_{0}}^{\mu_{F}^{2}} \mathrm{~d} \Phi_{R \mid B}^{i j} \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}} \Delta^{(\mathrm{PS})}(t) O\left(r_{\widetilde{\imath} \jmath}\left(\Phi_{B}\right)\right)}_{\text {resolved }}]
$$

Reminder + Notation: Subtraction method

- Contributions to NLO cross section: Born, \mathcal{V} irtual and $\mathcal{R e a l}$ emission
- \mathcal{V} and \mathcal{R} divergent in separate phase space integrations
\Rightarrow Subtraction method for expectation value of observable O at NLO:

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO})}=\sum_{\overrightarrow{f_{\mathrm{B}}}} & \int \mathrm{~d} \Phi_{B}\left[\mathcal{B}\left(\Phi_{B}\right)+\tilde{\mathcal{V}}\left(\Phi_{B}\right)+\sum_{\tilde{\imath} \jmath} \mathcal{I}_{\tilde{\imath} \jmath}^{(\mathrm{S})}\left(\Phi_{B}\right)\right] O\left(\Phi_{B}\right) \\
& +\sum_{\overrightarrow{f_{\mathrm{R}}}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right) O\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{S})}\left(\Phi_{R}\right) O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
\end{aligned}
$$

- Subtraction terms \mathcal{D} and their integrated form \mathcal{I}
e.g. Frixione, Kunszt, Signer (1995); Catani, Seymour (1996)
- Subtraction defines phase space mappings $\Phi_{R} \underset{r_{\tilde{\imath j}}}{\stackrel{b_{i j}}{\rightleftharpoons}}\left(\Phi_{B}, \Phi_{R \mid B}^{i j}\right)$

Problem

- Applying PS resummation to LO event is simple
- Can the same simply be done separately for \mathcal{B} and $\mathcal{V}+\mathcal{I}$ and $\mathcal{R}-\mathcal{D}$ at NLO?

$$
\begin{aligned}
&\langle O\rangle^{(\mathrm{NLO})}=\sum_{\overrightarrow{f_{\mathrm{B}}}} \int \mathrm{~d} \Phi_{B}\left[\mathcal{B}\left(\Phi_{B}\right)+\tilde{\mathcal{V}}\left(\Phi_{B}\right)+\sum_{\tilde{\imath \jmath}} \mathcal{I}_{\tilde{\imath \jmath}}^{(\mathrm{S})}\left(\Phi_{B}\right)\right] O\left(\Phi_{B}\right) \\
&+\sum_{\overrightarrow{f_{\mathrm{R}}}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right) O\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{S})}\left(\Phi_{R}\right) O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
\end{aligned}
$$

- Different observable dependence in \mathcal{R} and \mathcal{D} but if showered separately \Rightarrow "double counting"
x

Solution: Let's in the following ...

- rewrite $\langle O\rangle^{(\mathrm{NLO})}$ a bit
- add PS resummation into the game leading to $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}$ and claim that:
- $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}=\langle O\rangle^{(\mathrm{NLO})}$ to $\mathcal{O}\left(\alpha_{s}\right)$
- $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}$ contains the first step of a PS evolution which can then be continued trivially with a regular PS
- sketch how $\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}$ is being generated in Mc@NLO formalism

First rewrite: Additional set of subtraction terms $\mathcal{D}^{(A)}$

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO})}= & \sum_{\vec{f}_{B}} \int \mathrm{~d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right) O\left(\Phi_{B}\right) \\
& +\sum_{\vec{f}_{R}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right) O\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
\end{aligned}
$$

with $\overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right)$ defined as:

$$
\begin{aligned}
& \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right)=\mathcal{B}\left(\Phi_{B}\right)+\tilde{\mathcal{V}}\left(\Phi_{B}\right)+\sum_{\{\widetilde{\imath}\}} \mathcal{I}_{\tilde{\imath \jmath}}^{(\mathrm{S})}\left(\Phi_{B}\right) \\
&+\sum_{\{\widetilde{\imath \jmath}\}} \sum_{f_{i}=q, g} \int \mathrm{~d} \Phi_{R \mid B}^{i j}\left[\mathcal{D}_{i j}^{(\mathrm{A})}\left(r_{\widetilde{\imath \jmath}}\left(\Phi_{B}\right)\right)-\mathcal{D}_{i j}^{(\mathrm{S})}\left(r_{\widetilde{\imath \jmath}}\left(\Phi_{B}\right)\right)\right]
\end{aligned}
$$

- $\mathcal{D}_{i j}^{(\mathrm{A})}$ must have same kinematics mapping as $\mathcal{D}_{i j}^{(\mathrm{S})}$
- Exact choice of $\mathcal{D}_{i j}^{(\mathrm{A})}$ will specify e.g. MC@NLO vs. POWHEG
- Issue with different observable kinematics not yet solved \rightarrow next step

Second rewrite: Make observable correction term explicit

$$
\begin{aligned}
&\langle O\rangle^{(\mathrm{NLO})}=\sum_{\vec{f}_{B}} \int \mathrm{~d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right) O\left(\Phi_{B}\right) \\
&+\sum_{\vec{f}_{R}} \int \mathrm{~d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right)-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right)\right] O\left(\Phi_{R}\right) \\
&+\langle O\rangle^{(\mathrm{corr})}
\end{aligned}
$$

with $\langle O\rangle^{(\text {corr })}$ defined as:

$$
\langle O\rangle^{(\text {corr })}=\sum_{\vec{f}_{R}} \int \mathrm{~d} \Phi_{R} \sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right)\left[O\left(\Phi_{R}\right)-O\left(b_{i j}\left(\Phi_{R}\right)\right)\right]
$$

- Explicit correction term due to observable kinematics: $\langle O\rangle^{\text {(corr) }}$
- Essence of NLO+PS
- Ignore $\langle O\rangle^{\text {(corr) }}$ for the time being
- Apply PS resummation to first line using $\Delta^{(\mathrm{A})}$ in which $\mathcal{D}^{(\mathrm{PS})} \rightarrow \mathcal{D}^{(\mathrm{A})}$

Master formula for NLO+PS up to first emission

$$
\begin{aligned}
\langle O\rangle^{(\mathrm{NLO}+\mathrm{PS})}= & \sum_{\vec{f}_{B}} \int \mathrm{~d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}\left(\Phi_{B}\right)[\underbrace{\Delta^{(\mathrm{A})}\left(t_{0}\right)}_{\text {unresolved }} O\left(\Phi_{B}\right) \\
& +\sum_{\{\widetilde{\imath \jmath}\}} \sum_{f_{i}} \int_{t_{0}} \mathrm{~d} \Phi_{R \mid B}^{i j} \underbrace{\frac{\mathcal{D}_{i j}^{(\mathrm{A})}\left(r_{\widetilde{\imath} \jmath}\left(\Phi_{B}\right)\right)}{\mathcal{B}\left(\Phi_{B}\right)} \Delta^{(\mathrm{A})}(t)}_{\text {resolved, singular }} O\left(r_{\widetilde{\imath \jmath}}\left(\Phi_{B}\right)\right)] \\
& +\sum_{\vec{f}_{R}} \int \mathrm{~d} \Phi_{R} \underbrace{\left[\mathcal{R}\left(\Phi_{R}\right)-\sum_{i j} \mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right)\right]}_{\text {resolved, non-singular }} O\left(\Phi_{R}\right)
\end{aligned}
$$

- This is generated in the following way:
- Generate seed event according to first or second line of $\langle O\rangle^{(N L O)}$ on last slide
- Second line: \mathbb{H}-event with Φ_{R} is kept as-is \rightarrow resolved, non-singular term
- First line: \mathbb{S}-event with Φ_{B} is processed through one-step PS with $\Delta^{(\text {A })}$ \Rightarrow emission (resolved, singular) or no emission (unresolved) above t_{0}
- To $\mathcal{O}\left(\alpha_{s}\right)$ this reproduces $\langle O\rangle{ }^{(\mathrm{NLO})}$ including the correction term
- Resolved cases: Subsequent emissions can be generated by ordinary PS

Two Options:

Original Mc@NLO

Frixione, Webber (2002)
Choose the parton shower splitting kernels as additional subtraction terms:

$$
\mathcal{D}_{i j}^{(\mathrm{A})} \rightarrow \mathcal{D}_{i j}^{(\mathrm{PS})}
$$

- Exponentiation in "resolved, singular" contribution is naturally bounded by μ_{F}
- Problems with soft divergences in "resolved, non-singular" integration

$$
\int \mathrm{d} \Phi_{R}\left[\mathcal{R}\left(\Phi_{R}\right)-\sum_{i j} \mathcal{D}_{i j}^{(\mathrm{PS})}\left(\Phi_{R}\right)\right]
$$

- Workaround: Supplement $\mathcal{D}^{(\mathrm{PS})}$ with "soft suppression function" \mathcal{G}
- Since \mathcal{G} is not exponentiated, NLO accuracy breaks down for sub-leading colour configurations

SHERPA's variant

Höche, Krauss, Schönherr, FS (2011)

Choose the full Catani-Seymour dipoles as additional subtraction terms:

$$
\mathcal{D}_{i j}^{(\mathrm{A})} \rightarrow \mathcal{D}_{i j}^{(\mathrm{S})}
$$

- $\overline{\mathcal{B}}^{(\mathrm{A})}$ simplified significantly
- $\mathcal{D}^{(\mathrm{S})}$ can become negative $\Rightarrow \Delta>1$
- Generated in Sherpa by weighted $N_{C}=3$ one-step PS based on subtraction terms $\mathcal{D}^{(S)}$
- Exact NLO accuracy also for sub-leading colour configurations
- Phase space boundary for exponentiation is imposed by cuts in dipole terms

Event generation setup

- Sherpa's Mc@Nlo for $W+0, W+1$, $W+2$ and $W+3$-jet production
- Virtual corrections from ВLACKHAT, leading-colour approximation for the $W+3$-jet virtual
- For $n>0$ regularise requiring k_{T} jets with $p_{\perp}>10 \mathrm{GeV}$
- Exponentiation region restricted using $\alpha=0.01$-cut in dipole terms Nagy (2003) (cf. outlook)
- CTEQ6.6 NLO PDF
- $\mu_{R}=\mu_{F}=1 / 2 \hat{H}_{T}^{\prime}$, where
$\hat{H}_{T}^{\prime}=\sqrt{\sum p_{T, j}^{2}+E_{T, W}^{2}}$.
- Three levels of event simulation:
"NLO" Fixed-order
"MC@NLO 1em" Mc@NLO including hardest emission
"MC@NLO PL" Mc@NLO including full PS

Analysis setup

- Comparing to ATLAS W+jets measurement arXiv:1201.1276
- Using implementation in Rivet arXiv:1003.0694
- Lepton with $p_{\perp}>20 \mathrm{GeV},|\eta|<2.5$
- $E_{T}^{\text {miss }}>25 \mathrm{GeV}$
- $m_{\mathrm{T}}^{\mathrm{W}}>40 \mathrm{GeV}$
- Anti- k_{t} jets with $R=0.4$ and $p_{\perp}>30 \mathrm{GeV}$

Jet multiplicities

$W^{ \pm}+\geq n$ jets	ATLAS	NLO	Mc@NLO 1em	Mc@NLO PL
$n=0$	5.2 ± 0.2	$5.06(1)$	$5.09(3)$	$5.06(3)$
$n=1, p_{\perp j}>20 \mathrm{GeV}$	0.95 ± 0.10	$0.958(5)$	$0.968(10)$	$0.889(10)$
$p_{\perp j}>30 \mathrm{GeV}$	0.54 ± 0.05	$0.527(4)$	$0.534(7)$	$0.474(7)$
$n=2, p_{\perp j}>20 \mathrm{GeV}$	0.26 ± 0.04	$0.263(2)$	$0.260(5)$	$0.236(4)$
$p_{\perp j}>30 \mathrm{GeV}$	0.12 ± 0.02	$0.120(1)$	$0.123(2)$	$0.109(2)$
$n=3, p_{\perp j}>20 \mathrm{GeV}$	0.068 ± 0.014	$0.072(3)$	$0.059(3)$	$0.060(3)$
$p_{\perp j}>30 \mathrm{GeV}$	0.026 ± 0.005	$0.026(1)$	$0.022(2)$	$0.021(1)$

Transverse momenta of jets

Transverse momentum of the first, second and third jet (from top to bottom) in $W^{ \pm}+\geq 1,2,3$ jet production as measured by ATLAS compared to predictions from the corresponding fixed order and Mc@NLO simulations.

Angular correlations of leading jets

Angular correlations of the two leading jets in $W^{ \pm}+\geq 2$ jet production as measured by ATLAS compared to predictions from the $W^{ \pm}+2$ jet fixed order and Mc@NLO simulations.

Summary

- NLO+PS matching was presented in common formalism
- Mc@NlO developed as special case
- Colour-correctness achieved by exponentiating Catani-Seymour subtraction terms
- First NLO+PS predictions for $W+3$ jets
- Good agreement with experimental data from ATLAS

Outlook

- Improved functional form of dipole cut α will allow for better limitation of exponentiation region
- Merging NLO+PS with higher-multiplicity tree-level MEs can provide better description of multi-jet final states (\rightarrow e.g. MENLOPS)
- Ultimate goal: Merging of NLO at different multiplicities + parton shower

Backup

Original POWHEG

- Choose additional subtraction terms as

$$
\mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) \rightarrow \rho_{i j}\left(\Phi_{R}\right) \mathcal{R}\left(\Phi_{R}\right) \quad \text { where } \quad \rho_{i j}\left(\Phi_{R}\right)=\frac{\mathcal{D}_{i j}^{(\mathrm{S})}\left(\Phi_{R}\right)}{\sum_{m n} \mathcal{D}_{m n}^{(\mathrm{S})}\left(\Phi_{R}\right)}
$$

- \mathbb{H}-term vanishes
- $\overline{\mathcal{B}}^{(\mathrm{A})}$ remains complicated now, includes real-emission integration (may be done by Monte-Carlo method)
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

- Subtract arbitrary regular piece from \mathcal{R} and generate separately

$$
\mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) \rightarrow \rho_{i j}\left(\Phi_{R}\right)\left[\mathcal{R}\left(\Phi_{R}\right)-\mathcal{R}^{r}\left(\Phi_{R}\right)\right] \quad \text { where } \quad \rho_{i j} \text { as above }
$$

- Allows to generate the non-singular cases of \mathcal{R} without underlying \mathcal{B}
- More control over how much is exponentiated

