Simulation of prompt photon production in Sherpa

Photon Physics at Hadron Colliders
Paris, 30/03/2012
Frank Siegert

- arXiv:0912.3501 (Stefan Höche, Steffen Schumann, FS)
- arXiv:0903.1219 (Stefan Höche, Frank Krauss, Steffen Schumann, FS)

ME+PS merging in a nutshell

- Parton shower approximates corrections from higher-order real emission MEs
- Approximations only valid for collinear emissions
\Rightarrow Want to improve wide-angle emissions using the exact real emission MEs
- Avoid double counting and preserve shower evolution: ME+PS merging a la CKKW Catani, Krauss, Kuhn, Webber (2001); Höche, Krauss, Schumann, FS (2009)
- Note: Only LO accuracy in the inclusive process (as opposed to e.g. *Phox, ...)

QCD ME+PS merging

- Include higher-order QCD MEs to correct QCD shower
- Example: $\gamma \gamma, \gamma \gamma+$ jet, $\gamma \gamma+2$ jets
- Parton shower only "unfolds" PDF
- Higher-order MEs contain unordered contributions in PS evolution view:

$$
" \gamma \text { jet }+\gamma \text { ", " } 2 \text { jets }+\gamma \gamma \text { " }
$$

\Rightarrow "Fragmentation" component included

QED ME+PS merging

- Include higher-order QED MEs to correct QED shower
- Example: jet jet, jet jet $+\gamma$, jet jet $+\gamma \gamma$
- MEs will be regularised by some isolation criterion, and shower takes over below
- (Can be combined with QCD ME+PS to interleaved $\mathrm{QCD} \oplus \mathrm{QED} \mathrm{ME}+\mathrm{PS}$)
\Rightarrow Sample inclusive wrt photon isolation

QCD ME+PS for prompt photon production

How it works practically

- Use \sim analysis photon isolation definition (but slightly looser) as inclusive parton-level cut, set ME+PS separation $Q_{\text {cut }}$ low enough (cf. below)

$$
\Rightarrow \text { Inclusive sample for isolated photons, }
$$ including non-perturbative effects (hadronisation, MPI, ...)

ME +PS separation criterion $Q_{\text {cut }}$

Example: $\gamma+$ jets at LHC

- Generated with fixed photon p_{\perp} cut of 7 GeV
- Two different $Q_{\text {cut }}$: 7 GeV vs. 14 GeV
- Problem: Why is the p_{\perp} spectrum biased up to such high photon $p_{\perp} \approx 50 \mathrm{GeV}$?

QCD ME+PS for prompt photon production

Diagnosis

- $\gamma+$ jet implies a factorisation scale like $\mu_{F} \sim p_{\perp}^{\gamma}$
- Parton shower does not allow for QCD emissions above μ_{F} (\rightarrow factorisation)
- As opposed to other processes like $Z+$ jets we can now have very low μ_{F}
\Rightarrow Emission rate from PS alone (and thus factorised cross section) much too low
$\Rightarrow \mathrm{ME}+\mathrm{PS}$ corrects for this, but only down to $Q_{\text {cut }}$
\Rightarrow We might still be missing rate for the cases where " $\mu_{F}<Q_{\text {cut" }}$

Solution

- Choose a dynamical $Q_{\text {cut }}$ depending on the μ_{F} of the event (similar to DIS simulation arXiv:0912.3715)
- Example: $\left(\frac{Q_{\text {cut }}}{E_{\mathrm{CMS}}}\right)^{2}=\frac{\left(\frac{Q_{\text {cut }}^{0}}{E_{\mathrm{CMS}}}\right)^{2}}{1.0+\left(\frac{Q_{\text {cut }}^{0}}{\kappa p_{\perp}^{\top}}\right)^{2}}$
where $Q_{\text {cut }}^{0}$ is \sim the fixed value of $Q_{\text {cut }}$ one would have chosen before and κ can optionally be chosen <1 as a safety factor, e.g. $\kappa=0.6$
- (Note: This is not a "randomly smeared out" $Q_{\text {cut }}$ which has sometimes been suggested to get rid of kinks, but a well-defined $Q_{\text {cut }}$ at each phase space point)

With dynamical $Q_{\text {cut }}$

Photon p_{\perp}

- Generated with fixed photon p_{\perp} cut of 7 GeV
- Two different $Q_{\text {cut }}^{0}$: 7 GeV vs. 14 GeV
\Rightarrow Basically no bias anymore

QED ME+PS merging

Fragmentation function

- Basis: An interleaved QCD+QED parton shower generates the perturbative part of the photon fragmentation function $D_{\gamma}\left(z_{\gamma}, \mu\right)$
- Comparison to ALEPH data for validation
- Measurement suggested by Glover, Morgan (1994), done by ALEPH (1996)
- "Democratic" approach: Cluster all particles, find γ in jets with $z_{\gamma}>0.7$
- Vary the jet resolution measure $y_{\text {cut }}$ as scale μ
- Monte-Carlo setup: $e^{+} e^{-} \rightarrow j j+\mathrm{QCD} \oplus \mathrm{QED}$ parton shower

Marek Schönherr, PhD thesis (2011)

- Improve QED shower by including tree-level ME corrections
- Example:
$-p p \rightarrow e^{+} e^{-}$
- $p p \rightarrow e^{+} e^{-} \gamma$
- $p p \rightarrow e^{+} e^{-} \gamma \gamma$
- Here compared for invariant mass of "dressed" leptons
- YFS soft-photon resummation including NLO correction
- pure QED shower
- QED ME+PS
- no QED radiation

Basic idea

"Democratic" extension of QCD ME+PS merging to QED

- Take into account MEs with all combinations of partons and photons
- Regularise them by some kind of isolation criterion (may be different for QCD/QED)
- Fill in the region below the isolation with interleaved $\mathrm{QCD} \oplus \mathrm{QED}$ shower

Fragmentation component split into photon production through "ME" and "PS"

Practical difficulties

- Generating "photon production in PS" component is expensive (e.g. high dijet cross section, but hardly any events with hard/isolated photon)
- Sample is not inclusive if that contribution is left out
- Adjusting the separation criterion for each analysis would allow to leave it out But: Then conceptually identical to QCD ME+PS with photon isolation cuts

Example: QCD $\oplus \mathrm{QED}$ ME+PS in diphoton production

