Simulation of prompt photon production in Sherpa

Photon Physics at Hadron Colliders Paris, 30/03/2012

Frank Siegert

Albert-Ludwigs-Universität Freiburg

Based on

- arXiv:0912.3501 (Stefan Höche, Steffen Schumann, FS)
- arXiv:0903.1219 (Stefan Höche, Frank Krauss, Steffen Schumann, FS)

ME+PS merging in a nutshell

- Parton shower approximates corrections from higher-order real emission MEs
- ▶ Approximations only valid for collinear emissions ⇒ Want to improve wide-angle emissions using the exact real emission MEs
- Avoid double counting and preserve shower evolution: ME+PS merging a la CKKW Catani, Krauss, Kuhn, Webber (2001); Höche, Krauss, Schumann, FS (2009)
- Note: Only LO accuracy in the inclusive process (as opposed to e.g. *Phox, ...)

QCD ME+PS merging

- Include higher-order QCD MEs to correct QCD shower
- Example: $\gamma\gamma$, $\gamma\gamma$ + jet, $\gamma\gamma$ + 2 jets
- Parton shower only "unfolds" PDF
- Higher-order MEs contain unordered contributions in PS evolution view:
 "γ jet + γ", "2 jets + γγ"
 - ⇒ "Fragmentation" component included

QED ME+PS merging

- Include higher-order QED MEs to correct QED shower
- Example: jet jet, jet jet + γ , jet jet + $\gamma\gamma$
- MEs will be regularised by some isolation criterion, and shower takes over below
- (Can be combined with QCD ME+PS to interleaved QCD⊕QED ME+PS)
- \Rightarrow Sample inclusive wrt photon isolation

How it works practically

► Use ~ analysis photon isolation definition (but slightly looser) as inclusive parton-level cut, set ME+PS separation *Q*_{cut} low enough (cf. below)

 \Rightarrow Inclusive sample for isolated photons, including non-perturbative effects (hadronisation, MPI, ...)

ME+PS separation criterion Q_{cut}

Example: γ +jets at LHC

- Generated with fixed photon p_⊥ cut of 7 GeV
- Two different Q_{cut}: 7 GeV vs. 14 GeV
- Problem: Why is the p_{\perp} spectrum biased up to such high photon $p_{\perp} \approx 50$ GeV?

QCD ME+PS for prompt photon production

Diagnosis

- γ +jet implies a factorisation scale like $\mu_F \sim p_{\perp}^{\gamma}$
- ▶ Parton shower does not allow for QCD emissions above μ_F (→ factorisation)
- ► As opposed to other processes like Z+jets we can now have very low μ_F
 - \Rightarrow Emission rate from PS alone (and thus factorised cross section) much too low
 - \Rightarrow ME+PS corrects for this, but only down to Q_{cut}

 \Rightarrow We might still be missing rate for the cases where " $\mu_F < Q_{\text{cut}}$ "

Solution

 Choose a dynamical Q_{cut} depending on the μ_F of the event (similar to DIS simulation arXiv:0912.3715)

• Example:
$$\left(\frac{Q_{\text{cut}}}{E_{\text{CMS}}}\right)^2 = \frac{\left(\frac{Q_{\text{cut}}^0}{E_{\text{CMS}}}\right)^2}{1.0 + \left(\frac{Q_{\text{cut}}^0}{\kappa p_\perp^2}\right)^2}$$

where $Q_{\rm cut}^0$ is \sim the fixed value of $Q_{\rm cut}$ one would have chosen before and κ can optionally be chosen <1 as a safety factor, e.g. $\kappa=0.6$

 (Note: This is not a "randomly smeared out" Q_{cut} which has sometimes been suggested to get rid of kinks, but a well-defined Q_{cut} at each phase space point)

With dynamical Q_{cut}

- Generated with fixed photon *p*_⊥ cut of 7 GeV
- Two different Q⁰_{cut}:
 7 GeV vs. 14 GeV
- \Rightarrow Basically no bias anymore

Fragmentation function

- Basis: An interleaved QCD+QED parton shower generates the perturbative part of the photon fragmentation function D_γ(z_γ, μ)
- Comparison to ALEPH data for validation
 - Measurement suggested by Glover, Morgan (1994), done by ALEPH (1996)
 - "Democratic" approach: Cluster all particles, find γ in jets with $z_{\gamma} > 0.7$
 - Vary the jet resolution measure y_{cut} as scale μ
 - Monte-Carlo setup: $e^+e^- \rightarrow jj + QCD \oplus QED$ parton shower

Marek Schönherr, PhD thesis (2011)

- Improve QED shower by including tree-level ME corrections
- Example:

$$pp \to e^+e^- pp \to e^+e^- \gamma pp \to e^+e^- \gamma \gamma \dots$$

- Here compared for invariant mass of "dressed" leptons
 - YFS soft-photon resummation including NLO correction
 - pure QED shower
 - QED ME+PS
 - no QED radiation

Basic idea

"Democratic" extension of QCD ME+PS merging to QED

- Take into account MEs with all combinations of partons and photons
- Regularise them by some kind of isolation criterion (may be different for QCD/QED)
- ► Fill in the region below the isolation with interleaved QCD⊕QED shower

Fragmentation component split into photon production through "ME" and "PS"

Practical difficulties

- Generating "photon production in PS" component is expensive (e.g. high dijet cross section, but hardly any events with hard/isolated photon)
- Sample is not inclusive if that contribution is left out
- Adjusting the separation criterion for each analysis would allow to leave it out But: Then conceptually identical to QCD ME+PS with photon isolation cuts

