NLO+PS matching for non-trivial processes

Theory Seminar 09.07.2012, MPP München

Frank Siegert

Albert-Ludwigs-Universität Freiburg

Table of Con	tents		

Introduction

Motivation Resummation in parton-showers (PS) Fixed order NLO calculations

Common formalism for NLO+PS matching

From fixed order to resummation Special cases: POWHEG and MC@NLO Example application: W + n-jet production

Uncertainties

Merging different parton multiplicities

MENLOPS Sneak preview: MEPS@NLO for $e^+e^- \rightarrow$ hadrons Sneak preview: MEPS@NLO for $pp \rightarrow W$ + jets

Conclusions

Introduction •••••			
Motivation f	or NLO+PS matching		

Two approaches to higher-order corrections

Fixed order ME calculation

Parton Shower

- + Exact to fixed order
- + Includes all interferences
- + $N_C = 3$ (summed or sampled)
- + Includes virtual contributions
- Perturbation breaks down in logarithmically enhanced regions

- + Resums logarithmically enhanced contributions to all orders
- + High-multiplicity final state
- + Allows for exclusive hadron-level events
- Only approximation for emission ME
- Large N_C limit

₩

Goal: Combine advantages

- Include virtual contributions and first hard emission from NLO ME
- Add further parton evolution with the PS

Introduction		
00000		

Resummation in parton-showers

Factorisation of collinear QCD emissions

Universal factorisation of QCD real emission ME in collinear limit:

$$\mathcal{R} \stackrel{ij \text{ collinear }}{\longrightarrow} \mathcal{D}_{ij}^{(\text{PS})} = \mathcal{B} \times \left(\frac{1}{2p_i p_j} 8\pi \alpha_s \ \mathcal{K}_{ij}(p_i, p_j)\right)$$

- $\frac{1}{2p_i p_j}$ from massless propagator Evolution variable of shower $t \sim 2p_i p_j$ (e.g. k_{\perp} , angle, ...)
- *K_{ij}* splitting kernel for branching *ij* → *i* + *j* Specific form depends on scheme of the factorisation, e.g.:
 - Altarelli-Parisi splitting functions
 - ▶ Dipole terms from Catani-Seymour subtraction (in $N_C \rightarrow \infty$)
 - Antenna functions

Radiative phase space factorisation:

$$\mathrm{d}\Phi_R \to \mathrm{d}\Phi_B \ \mathrm{d}\Phi_{R|B}^{ij} \stackrel{\mathrm{e.g.}}{=} \mathrm{d}\Phi_B \ \frac{1}{16\pi^2} \ \mathrm{d}t \ \mathrm{d}z \frac{\mathrm{d}\phi}{2\pi}$$

Introduction		
00000		

Resummation in parton-showers

Differential branching probability

$$\mathrm{d}\sigma_{\mathrm{branch}}^{\tilde{\imath}j} = \sum_{f_i = q,g} \mathrm{d}\Phi_{R|B}^{ij} \; \frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}}$$

Symmetry factors/PDFs ignored)

Differential probability for single branching of subterm ij in interval $d\Phi_{R|B}^{ij}$

Total "survival" probability of parton ensemble

- Integrate single branching probability down to scale t in terms of $t(\Phi_{R|B}^{ij})$
- ► Assume multiple independent emissions (Poisson statistics) ⇒ Exponentiation

subterm:
$$\begin{split} \Delta_{\tilde{i}\tilde{j}}^{(\mathrm{PS})}(t) &= 1 - \int \mathrm{d}\sigma_{\mathrm{branch}}^{\tilde{i}\tilde{j}} \,\Theta\left(t(\Phi_{R|B}^{ij}) - t\right) + \dots \\ &= \exp\left\{-\sum_{f_i=q,g} \int \mathrm{d}\Phi_{R|B}^{ij} \,\Theta\left(t(\Phi_{R|B}^{ij}) - t\right) \,\frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}}\right\} \\ \text{event:} \ \Delta^{(\mathrm{PS})}(t) &= \prod_{\tilde{i}\tilde{j}} \Delta_{\tilde{i}\tilde{j}}^{(\mathrm{PS})}(t) \end{split}$$

Introduction 00000		
D		

Resummation in parton-showers

Cross section up to first emission in a parton shower

$$\langle O \rangle^{(\mathrm{PS})} = \int \mathrm{d}\Phi_B \, \mathcal{B}\left[\underbrace{\Delta(t_0) \, O(\Phi_B)}_{\text{unresolved}} + \underbrace{\sum_{ij} \sum_{f_i} \int_{t_0}^{\mu_F^2} \mathrm{d}\Phi_{R|B}^{ij} \, \frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}} \Delta(t) \, O\left(r_{ij}(\Phi_B)\right)}_{\text{resolved}}\right]$$

Generating events for $\langle O \rangle^{(\mathrm{PS})}$	Features of $\langle O \rangle^{(PS)}$
 Generate Born ME event B at μ_F² Generate t according to survival probability Δ(t)/Δ(μ_F²) Stop if t < t₀ Generate remaining kinematics of the branching (z, φ) according to D^(PS)_{ij}/B 	 Unitarity: [] _{O=1} = 1 ⇒ LO cross section preserved "Unresolved" part: No emissions above cutoff t₀ "Resolved" part: Emission between t₀ and μ_F² in PS approximation

Introduction			
Fixed order	NLO calculations		

Reminder + Notation: Subtraction method

- ► Contributions to NLO cross section: Born, Virtual and Real emission
- V and R divergent in separate phase space integrations ⇒ Subtraction method for expectation value of observable O at NLO:

$$\begin{split} \langle O \rangle^{(\text{NLO})} &= \sum_{\tilde{f}_{B}} \int \mathrm{d}\Phi_{B} \left[\mathcal{B}(\Phi_{B}) + \tilde{\mathcal{V}}(\Phi_{B}) + \sum_{\tilde{i}j} \mathcal{I}_{\tilde{i}\tilde{j}}^{(\text{S})}(\Phi_{B}) \right] O(\Phi_{B}) \\ &+ \sum_{\tilde{f}_{R}} \int \mathrm{d}\Phi_{R} \left[\mathcal{R}(\Phi_{R}) O(\Phi_{R}) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{S})}(\Phi_{R}) O(b_{ij}(\Phi_{R})) \right] \end{split}$$

 \blacktriangleright Subtraction terms ${\cal D}$ and their integrated form ${\cal I}$

e.g. Frixione, Kunszt, Signer (1995); Catani, Seymour (1996)

Subtraction defines phase space mappings $\Phi_R \stackrel{b_{ij}}{\underset{r \neq j}{\Rightarrow}} \left(\Phi_B, \Phi_{R|B}^{ij} \right)$

	Common formalism for NLO+PS matching ●00000000		
From fixed	order to resummation		
Prob	olem		
	Applying PS resummation to LO even	t is simple	

• Can the same simply be done separately for \mathcal{B} and $\mathcal{V} + \mathcal{I}$ and $\mathcal{R} - \mathcal{D}$ at NLO?

$$\begin{split} \langle O \rangle^{(\text{NLO})} &= \sum_{\tilde{f}_{B}} \int \mathrm{d}\Phi_{B} \left[\mathcal{B}(\Phi_{B}) + \tilde{\mathcal{V}}(\Phi_{B}) + \sum_{\tilde{i}j} \mathcal{I}_{\tilde{i}j}^{(\text{S})}(\Phi_{B}) \right] O(\Phi_{B}) \\ &+ \sum_{\tilde{f}_{R}} \int \mathrm{d}\Phi_{R} \left[\mathcal{R}(\Phi_{R}) \, O(\Phi_{R}) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{S})}(\Phi_{R}) \, O(b_{ij}(\Phi_{R})) \right] \end{split}$$

Х

► Different observable dependence in *R* and *D* but if showered separately ⇒ "double counting"

Solution: Let's in the following ...

Frixione, Webber (2002)

- ▶ rewrite (O)^(NLO) a bit
- ▶ add PS resummation into the game leading to ⟨O⟩^(NLO+PS) and claim that:
 - $\langle O \rangle^{(\text{NLO}+\text{PS})} = \langle O \rangle^{(\text{NLO})}$ to $\mathcal{O}(\alpha_s)$
 - (O)^(NLO+PS) contains the first step of a PS evolution which can then be continued trivially with a regular PS
- ▶ sketch how (O)^(NLO+PS) is being generated in MC@NLO formalism

Common formalism for NLO+PS matching		

From fixed order to resummation

First rewrite: Additional set of subtraction terms $\mathcal{D}^{(A)}$

$$\begin{split} \langle O \rangle^{(\text{NLO})} &= \sum_{\vec{f}_B} \int \mathrm{d}\Phi_B \, \bar{\mathcal{B}}^{(\text{A})}(\Phi_B) \, O(\Phi_B) \\ &+ \sum_{\vec{f}_R} \int \mathrm{d}\Phi_R \, \left[\mathcal{R}(\Phi_R) \, O(\Phi_R) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})}(\Phi_R) \, O\left(b_{ij}(\Phi_R)\right) \right] \end{split}$$

with $\bar{\mathcal{B}}^{(A)}(\Phi_B)$ defined as:

$$\begin{split} \bar{\mathfrak{Z}}^{(\mathrm{A})}(\Phi_B) &= \mathcal{B}(\Phi_B) + \tilde{\mathcal{V}}(\Phi_B) + \sum_{\{\tilde{\imath\jmath}\}} \mathcal{I}^{(\mathrm{S})}_{i\tilde{\jmath}j}(\Phi_B) \\ &+ \sum_{\{\tilde{\imath\jmath}\}} \sum_{f_i = q,g} \int \mathrm{d}\Phi^{ij}_{R|B} \left[\mathcal{D}^{(\mathrm{A})}_{ij}(\boldsymbol{r}_{\tilde{\imath\jmath}}(\Phi_B)) - \mathcal{D}^{(\mathrm{S})}_{ij}(\boldsymbol{r}_{\tilde{\imath\jmath}}(\Phi_B)) \right] \end{split}$$

▶ D^(A)_{ij} must have same kinematics mapping as D^(S)_{ij}

- Exact choice of $\mathcal{D}_{ij}^{(A)}$ will specify e.g. MC@NLO vs. POWHEG
- ▶ Issue with different observable kinematics not yet solved \rightarrow next step

Common formalism for NLO+PS matching		
0000000		

From fixed order to resummation

Second rewrite: Make observable correction term explicit

$$\langle O \rangle^{(\text{NLO})} = \sum_{\vec{f}_B} \int d\Phi_B \, \vec{\mathcal{B}}^{(\text{A})}(\Phi_B) \, O(\Phi_B)$$

$$+ \sum_{\vec{f}_R} \int d\Phi_R \left[\mathcal{R}(\Phi_R) - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})}(\Phi_R) \right] \, O(\Phi_R)$$

$$+ \langle O \rangle^{(\text{corr})}$$

with $\langle O \rangle^{(\text{corr})}$ defined as:

$$\langle O \rangle^{(\text{corr})} = \sum_{\vec{f}_R} \int \mathrm{d}\Phi_R \sum_{\{ij\}} \mathcal{D}_{ij}^{(A)}(\Phi_R) \left[O(\Phi_R) - O(b_{ij}(\Phi_R)) \right]$$

- Explicit correction term due to observable kinematics: $\langle O \rangle^{(\text{corr})}$
- Essence of NLO+PS
 - Ignore $\langle O \rangle^{(\text{corr})}$ for the time being
 - Apply PS resummation to first line using $\Delta^{(A)}$ in which $\mathcal{D}^{(PS)} \to \mathcal{D}^{(A)}$

Introduction 00000	Common formalism for NLO+PS matching	Uncertainties 00000	Merging different parton multiplicities 000000000000	
From fixed	order to resummation			
Mas	ter formula for NLO+PS u	ıp to first en	nission	
	$\langle O \rangle^{(\text{NLO+PS})} = \sum_{\vec{f}_B} \int \mathrm{d}\Phi_B \vec{\mathcal{B}}^{(\text{A})}$	$(\Phi_B) \left[\underbrace{\Delta^{(A)}(t)}_{unresolv} \right]$	$(t_0) = O(\Phi_B)$	
	$+\sum_{\{ij\}}\sum_{f_i}\int_{t_0}\mathrm{d} t$	$\Phi_{R B}^{ij} \underbrace{\frac{\mathcal{D}_{ij}^{(A)}(r_{\hat{i}})}{\mathcal{B}(\Phi)}}_{\text{res}}$	$\left[\frac{\tilde{j}(\Phi_B))}{B} \Delta^{(A)}(t) O(r_{\tilde{i}j}(\Phi_B))\right]$ olved, singular	
	$+ \sum_{\vec{f}_R} \int \mathrm{d}\Phi_R$	$\left[\mathcal{R}(\Phi_R) - \sum_{ij} \right]$	$\left[\mathcal{D}_{ij}^{(\mathrm{A})}(\Phi_R)\right] O(\Phi_R)$	

resolved, non-singular $\equiv \mathcal{H}^{(A)}$

- This is generated in the following way:
 - Generate seed event according to first or second line of $\langle O \rangle^{(\text{NLO})}$ on last slide
 - Second line: \mathbb{H} -event with Φ_R is kept as-is \rightarrow resolved, non-singular term
 - First line: S-event with Φ_B is processed through one-step PS with Δ^(A) ⇒ emission (resolved, singular) or no emission (unresolved) above t₀
- To $\mathcal{O}(\alpha_s)$ this reproduces $\langle O \rangle^{(\text{NLO})}$ including the correction term
- Resolved cases: Subsequent emissions can be generated by ordinary PS

	Common formalism for NLO+PS matching		
Special case:	Powheg		

Original POWHEG

Choose additional subtraction terms as

$$\mathcal{D}_{ij}^{(A)}(\Phi_R) \to \rho_{ij}(\Phi_R) \mathcal{R}(\Phi_R) \quad \text{where} \quad \rho_{ij}(\Phi_R) = \frac{\mathcal{D}_{ij}^{(S)}(\Phi_R)}{\sum_{mn} \mathcal{D}_{mn}^{(S)}(\Phi_R)}$$

(C)

- ► Ill-term vanishes
- ▶ B^(A) remains complicated now, includes real-emission integration (may be done by Monte-Carlo method)
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

 \blacktriangleright Subtract arbitrary regular piece from ${\cal R}$ and generate separately

$$\mathcal{D}_{ij}^{(A)}(\Phi_R) \to \rho_{ij}(\Phi_R) \ [\mathcal{R}(\Phi_R) - \mathcal{R}^r(\Phi_R)] \qquad \text{where} \qquad \rho_{ij} \text{ as above}$$

- ► Allows to generate the non-singular cases of *R* without underlying *B*
- More control over how much is exponentiated

Common formalism for NLO+PS matching	
00000000	

Special case: MC@NLO

To prove NLO accuracy:

 $\mathcal{D}^{(\mathrm{A})}$ needs to be identical in shower algorithm and real-emission events

Original idea: $\mathcal{D}^{(A)} = PS$ splitting kernels

Frixione, Webber (2002)

- + Shower algorithm for Born-like events easy to implement
- "Non-singular" piece $\mathcal{R} \sum_{ij} \mathcal{D}_{ij}^{(A)}$ is actually singular:
 - Collinear divergences subtracted by splitting kernels
 - Remaining soft divergences as they appear in non-trivial processes at sub-leading N_c

Workaround: *G*-function dampens soft limit in non-singular piece ⇔ Loss of formal NLO accuracy (but heuristically only small impact) Alternative idea: $\mathcal{D}^{(A)}$ = Catani-Seymour dipole subtraction terms $\mathcal{D}^{(S)}$

Höche, Krauss, Schönherr, FS (2011)

- + "Non-singular" piece fully free of divergences
- + $\bar{\mathcal{B}}^{(A)}$ function simplifies
- Splitting kernels in shower algorithm become negative

Solution: Weighted $N_C = 3$ one-step PS based on subtraction terms

Results for W + n-jet production at the LHC (arXiv:1201.5882)

Event generation setup

- SHERPA's MC@NLO for W + 0, W + 1, W + 2 and W + 3-jet production
- ► Virtual corrections from BLACKHAT, leading-colour approximation for the *W* + 3-jet virtual
- For n > 0 regularise requiring k_T jets with $p_{\perp} > 10 \text{ GeV}$
- Exponentiation region restricted using α = 0.01-cut in dipole terms (cf. later)
- CTEQ6.6 NLO PDF
- $\mu_R = \mu_F = 1/2 \, \hat{H}'_T$, where $\hat{H}'_T = \sqrt{\sum p_{T,j}^2 + E_{T,W}^2}.$
- Three levels of event simulation:

Analysis setup

- Comparing to ATLAS W+jets measurement arXiv:1201.1276
- Using implementation in Rivet arXiv:1003.0694
- Lepton with $p_{\perp} > 20$ GeV, $|\eta| < 2.5$
- ▶ $E_T^{\text{miss}} > 25 \text{ GeV}$
- ▶ $m_{\rm T}^{\rm W} > 40 \, {\rm GeV}$
- Anti-k_t jets with R = 0.4 and p_⊥ > 30 GeV

Common formalism for NLO+PS matching		
00000000		

Results for W + n-jet production at the LHC (arXiv:1201.5882)

Transverse momenta of jets

Transverse momentum of the first, second and third jet (from top to bottom) in $W^{\pm} + \ge 1, 2, 3$ jet production as measured by ATLAS compared to predictions from the corresponding fixed order and MC@NLO simulations.

Results for W + n-jet production at the LHC (arXiv:1201.5882)

Angular correlations of the two leading jets in $W^{\pm} + \geq 2$ jet production as measured by ATLAS compared to predictions from the $W^{\pm} + 2$ jet fixed order and MC@NLO simulations.

		Uncertainties •0000	
NLO+PS unc	ertainties		

Höche, Krauss, Schönherr, FS (2011)

Perturbative uncertainties

- Unknown higher-order corrections
- Can be estimated by scale variations, e.g. $\mu_F = \mu_R = \frac{1}{2}\mu \dots 2\mu$

Non-perturbative uncertainties

- Model uncertainties in hadronisation, hadron decays, multiple parton interactions
- Can be estimated by variation of parameters/models within tuned ranges

Exponentiation uncertainties

- Arbitrariness of D^(A) and thus of the exponent in Δ^(A)
- Estimated here using SHERPA by:
 - Comparing MC@NLO and POWHEG prescription
 - ▶ Using MC@NLO with variable cut-off in dipole terms D^(S)

		Uncertainties 00000	
Exponentiat	ion uncertainties		

Recall NLO+PS expression and its resummation evolution:

$$\begin{split} \langle \mathcal{O} \rangle \ &= \int \mathrm{d}\Phi_B \, \bar{\mathcal{B}}^{(\mathrm{A})} \left[\begin{array}{c} \underline{\Delta}^{(\mathrm{A})}(t_0) \\ \mathrm{unresolved} \end{array} \mathcal{O}(\Phi_B) \ &+ \sum_{\{ij\}} \int_{t_0} \mathrm{d}\Phi_R^{ij} B \\ + \int \mathrm{d}\Phi_R \underbrace{\left[\mathcal{R} - \sum_{ij} \mathcal{D}^{(\mathrm{A})}_{ij} \right]}_{\text{resolved, non-singular}} \mathcal{O}(\Phi_R) \\ \end{array} \right] \\ \end{split}$$

- Determines how much emission phase space is exponentiated

How to implement and vary this consistently in NLO+PS?

	Uncertainties 00000	

Cuts in dipole terms

Basic idea: Implement upper cut-off in resummation kernels $\mathcal{D}_{ij}^{(\mathrm{A})}$

Höche, Krauss, Schönherr, FS (2011)

Höche, Schönherr (in prep.)

In both cases: Variation gives handle on resummation uncertainty in NLO+PS

	Uncertainties 00000	
т		

Exponentiation uncertainties in the example of $gg \rightarrow h$

Example setup

- $\blacktriangleright ~gg \rightarrow h \rightarrow \tau \tau$ at LHC with $\sqrt{s}=7$ TeV and $m_h=120$ GeV, $\mu=m_h$
- Analysed with $p_{\perp}^{\tau} > 25 \text{ GeV}$ and $|n^{\tau}| < 3.5$
- ▶ Jets defined using inclusive k_{\perp} with R = 0.7 and $p_{\perp} > 20$ GeV

Studies at parton shower level

- 1. Validate NLO+PS against fixed NLO predictions
- 2. Comparison with LO parton shower (LO+PS)
- 3. MC@NLO vs. POWHEG
- 4. MC@NLO with $0.001 \le \alpha_{\text{cut}} \le 1$ variation

```
\Rightarrow Very busy plots
(SORRY!)
```

	Uncertainties 00000	

Exponentiation uncertainties in the example of $gg \rightarrow h$

- With large α variation: Huge NLO+PS uncertainties especially at large p_{\perp}^{h}
- POWHEG and unrestricted MC@NLO similar
- $\blacktriangleright\,$ Decreasing exponentiation of non-singular pieces with $\alpha_{\rm cut} \lesssim 0.01$ recovers NLO behaviour
- Resummation region p^h_⊥ → 0 strongly affected by α_{cut} variation: side effect of imperfect functional form of α (vs. parton shower t ~ k²_⊥)

	Merging different parton multiplicities	
	0000000000	

MENLOPS: Merging NLO+PS with higher-order tree-level MEs

$\langle O \rangle$ up to first emission in MENLOPS

$$\begin{split} \langle O \rangle &= \int \mathrm{d}\Phi_n \, \bar{\mathcal{B}}_n^{(\mathrm{A})} \bigg[\Delta_n^{(\mathrm{A})}(t_0) \, O(\Phi_n) + \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \frac{\mathcal{D}_n^{(\mathrm{A})}(\Phi_n, \Phi_1)}{\mathcal{B}_n(\Phi_n)} \Delta_n^{(\mathrm{A})}(t) \, \Theta(Q_{\mathsf{cut}} - Q) \, O(\Phi_{n+1}) \bigg] \\ &+ \int \mathrm{d}\Phi_{n+1} \, \mathcal{H}_n^{(\mathrm{A})}(\Phi_{n+1}) \, \Theta(Q_{\mathsf{cut}} - Q) \, O(\Phi_{n+1}) \\ &+ \int \mathrm{d}\Phi_{n+1} \, k_n^{(\mathrm{A})}(\Phi_{n+1}) \, \mathcal{B}_{n+1}(\Phi_{n+1}) \, \Delta_n^{(\mathrm{PS})}(t) \, \Theta(Q - Q_{\mathsf{cut}}) \, O(\Phi_{n+1}) \end{split}$$

- Introduce parton separation criterion Q for n + 1 partons
 - Q < Q_{cut} ⇒ Treat as n parton process (here: MC@NLO)
 - $Q > Q_{\text{cut}} \Rightarrow$ Treat as n + 1 parton process (here: Tree-level ME)
- Sudakov from (truncated) shower to preserve logarithmic accuracy of the shower

• Local "K-factor"
$$k_n$$
 for smooth $\frac{\overline{B}}{B}$ matching

			Merging different parton multiplicities			
			0000000000			
MEPS@NLC	MEPS@NLO: Sneak preview					

 $\langle O \rangle$ for merging *n* with n + 1 partons in MEPS@NLO

$$\begin{split} \langle O \rangle &= \int \mathrm{d}\Phi_n \, \bar{\mathcal{B}}_n^{(\mathrm{A})} \bigg[\Delta_n^{(\mathrm{A})}(t_0) \, O(\Phi_n) + \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathcal{D}_n^{(\mathrm{A})}(\Phi_n, \Phi_1)}{\mathcal{B}_n(\Phi_n)} \Delta_n^{(\mathrm{A})}(t) \, \Theta(Q_{\mathrm{cut}} - Q) \, O(\Phi_{n+1}) \bigg] \\ &+ \int \mathrm{d}\Phi_{n+1} \, \mathcal{H}_n^{(\mathrm{A})}(\Phi_{n+1}) \, \Theta(Q_{\mathrm{cut}} - Q) \, O(\Phi_{n+1}) \\ &+ \int \mathrm{d}\Phi_{n+1} \, \bar{\mathcal{B}}_{n+1}^{(\mathrm{A})} \bigg[1 + \frac{\mathcal{B}_{n+1}}{\bar{\mathcal{B}}_{n+1}^{(\mathrm{A})}} \bigg(\int_t^{\mu_Q^2} \mathrm{d}\Phi_1 \, \mathcal{K}_n(\Phi_1) \bigg) \bigg] \Delta_n^{(\mathrm{PS})}(t) \, \Theta(Q - Q_{\mathrm{cut}}) \, O(\Phi_{n+1}) \\ &+ \int \mathrm{d}\Phi_{n+2} \, \mathcal{H}_{n+1}^{(\mathrm{A})}(\Phi_{n+2}) \, \Delta_n^{(\mathrm{PS})}(t) \, \Theta(Q - Q_{\mathrm{cut}}) \, O(\Phi_{n+2}) \end{split}$$

- Difference to MENLOPS: Tree-level ME with local *K*-factor replaced by exact n + 1 NLO result
- ▶ [...] on line 3: Correct parts otherwise generated by the parton shower

Höche, Krauss, Schönherr, FS (in preparation)

	Merging different parton multiplicities	

Sneak preview: MEPS@NLO for $e^+e^- \rightarrow$ hadrons with SHERPA

Höche, Krauss, Schönherr, FS (in preparation)

Event generation setup

- $e^+e^- \rightarrow$ hadrons at the Z pole
- SHERPA with built-in automatic MC@NLO
- Virtual matrix elements from BlackHat library, analyses from Rivet library

Comparison of approaches

- MC@NLO: One inclusive sample with
 - ▶ NLO accuracy for $e^+e^- \rightarrow 2$ partons
 - (\Rightarrow LO accuracy for $e^+e^- \rightarrow 3$ partons)
- MENLOPS: One inclusive sample with
 - ▶ NLO accuracy for $e^+e^- \rightarrow 2$ partons
 - LO accuracy for $e^+e^- \rightarrow 3, 4, 5, 6$ partons
- MEPS@NLO: One inclusive sample with
 - ▶ NLO accuracy for $e^+e^- \rightarrow 2, 3, 4$ partons
 - LO accuracy for $e^+e^- \rightarrow 5, 6$ partons
 - + Subsequent parton showering and hadronisation in all cases

	Merging different parton multiplicities	
	0000000000	

Thrust (ALEPH, 2004) and its moments (OPAL, 2004)

	Merging different parton multiplicities	
	0000000000	

C-Parameter (ALEPH, 2004) and its moments (OPAL, 2004)

	Merging different parton multiplicities	
	0000000000	

Sphericity (ALEPH, 2004) and its moments (OPAL, 2004)

29 / 34

	Merging different parton multiplicities	
	000000000000	

Höche, Krauss, Schönherr, FS (in preparation)

Event generation setup

- ▶ $pp \rightarrow W$ + jets at 7 TeV
- SHERPA with built-in automatic MC@NLO
- Virtual matrix elements from BlackHat library, analyses from Rivet library
- Displayed here:
 - MC@NLO
 - MEPS@NLO with W + 0, 1 partons
 - MEPS@NLO with W + 0, 1, 2 partons

	Merging different parton multiplicities	
	00000000000	

NLO merging predictions compared to ATLAS W+jets measurement (arXiv:1201.1276)

Höche, Krauss, Schönherr, FS (in preparation)

	Merging different parton multiplicities	
	00000000000	

NLO merging predictions compared to ATLAS W+jets measurement (arXiv:1201.1276)

Höche, Krauss, Schönherr, FS (in preparation)

	Merging different parton multiplicities	
	00000000000	

NLO merging predictions compared to ATLAS W+jets measurement (arXiv:1201.1276)

Höche, Krauss, Schönherr, FS (in preparation)

		Conclusions
Conclusions		

Summary

- Introduced common formalism for NLO+PS matching
- ▶ Application in *W* + 1, 2, 3-jet production at LHC
- Uncertainties from resummation can be sizable in NLO+PS predictions
- Merging of NLO+PS with higher multiplicities at tree-level and NLO
- Significant reduction of perturbative uncertainties in MEPS@NLO
 - \Rightarrow Very good agreement with data in $e^+e^- \rightarrow$ hadrons and W + jets production

Outlook

- Publication of MEPS@NLO formalism and results imminent
- ► Code and documentation release in Sherpa 2.0 in the near future
- ► Application to more processes relevant for LHC phenomenology ⇒ Interfacing to more virtual MEs
- After these improvements at fixed order: Improvements of resummation

Uncertainties from Q_{cut} variations

Höche, Krauss, Schönherr, FS (in preparation)