Matching and merging QCD matrix elements and parton showers at NLO accuracy

SLAC Theory Seminar, 11 Jan 2013

Frank Siegert

Albert-Ludwigs-Universität Freiburg

Based on

- arXiv:1207.5031 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1207.5030 (Thomas Gehrmann, Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1201.5882 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)
- arXiv:1111.1220 (Stefan Höche, Frank Krauss, Marek Schönherr, FS)

UNI FREIBURG

LHC phenomenology

- Higgs/BSM signals with heavy particles decaying into high multiplicity final states
- Backgrounds from simple SM processes with many additional jets
- \Rightarrow Need good understanding of higher order QCD corrections to SM processes

This talk

Improving approximate resummation of the series with exact fixed order corrections

Table of Contents

Introduction

Recap: NLO+PS matching

Common formalism for NLO+PS matching Special cases: MC@NLO and POWHEG Example application: W + n-jet production

Recap: ME+PS merging

ME+PS formalism Features and shortcomings

ME+PS merging at NLO

Formalism Results for $e^+e^- \rightarrow$ hadrons Results for W + jets

Conclusions

Introduction			
Fixed order M	$[O_{colculations}]$	00000	

Reminder + Notation: Subtraction method

- ► Contributions to NLO cross section: Born, Virtual and Real emission
- V and R divergent in separate phase space integrations ⇒ Subtraction method for cross section at NLO:

$$d\sigma^{(\text{NLO})} = \sum_{\vec{f}_{\text{B}}} d\Phi_B \left[\mathcal{B} + \tilde{\mathcal{V}} + \sum_{ij} \mathcal{I}_{ij}^{(\text{S})} \right] \\ + \sum_{\vec{f}_{\text{R}}} d\Phi_R \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{S})} \right]$$

- Subtraction terms D and their integrated form I
 e.g. Frixione, Kunszt, Signer (1995); Catani, Seymour (1996)
- Subtraction defines phase space mappings $\Phi_R \stackrel{b_{ij}}{\underset{r_{ij}}{\leftarrow}} (\Phi_B, \Phi_1)$

Introduction			
00000			
Resummatior	n in parton showers		

Factorisation of collinear QCD emissions

Universal factorisation of QCD real emission ME in collinear limit:

$$\mathcal{R} \stackrel{ij \text{ collinear }}{\longrightarrow} \mathcal{D}_{ij}^{(\mathrm{PS})} = \mathcal{B} \times \left(\frac{1}{2p_i p_j} \ 8\pi \alpha_s \ \mathcal{K}_{ij}(p_i, p_j)\right)$$

- Differential branching probability: $d\sigma_{\text{branch}}^{\tilde{i}\tilde{j}} = \sum_{f_i} d\Phi_1(t, z, \varphi) \frac{\mathcal{D}_{ij}^{(\text{PS})}}{\mathcal{B}}$
- ► Assume multiple independent emissions (Poisson statistics) ⇒ Exponentiation yields total no-branching probability down to evolution scale t:

$$\Delta^{(\mathrm{PS})}(t) = \prod_{ij} \exp\left\{-\sum_{f_i=q,g} \int \mathrm{d}\Phi_1 \Theta\left(t(\Phi_1) - t\right) \frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}}\right\}$$

Cross section up to first emission

$$\mathrm{d}\boldsymbol{\sigma}^{(\mathbf{B})} = \mathrm{d}\Phi_{B} \mathcal{B} \left[\underbrace{\Delta^{(\mathrm{PS})}(t_{0})}_{\text{unresolved}} + \sum_{ij} \sum_{f_{i}} \int_{t_{0}}^{\mu_{F}^{2}} \mathrm{d}\Phi_{1} \frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}} \Delta^{(\mathrm{PS})}(t) \right]$$

Introduction			
00000			
Resummatio	n in parton showers		

Factorisation of collinear QCD emissions

Universal factorisation of QCD real emission ME in collinear limit:

$$\mathcal{R} \stackrel{ij \text{ collinear }}{\longrightarrow} \mathcal{D}_{ij}^{(\mathrm{PS})} = \mathcal{B} \times \left(\frac{1}{2p_i p_j} \ 8\pi \alpha_s \ \mathcal{K}_{ij}(p_i, p_j)\right)$$

- Differential branching probability: $d\sigma_{\text{branch}}^{\tilde{i}\tilde{j}} = \sum_{f_i} d\Phi_1(t, z, \varphi) \frac{\mathcal{D}_{ij}^{(\text{PS})}}{\mathcal{B}}$
- ► Assume multiple independent emissions (Poisson statistics) ⇒ Exponentiation yields total no-branching probability down to evolution scale t:

$$\Delta^{(\mathrm{PS})}(t) = \prod_{ij} \exp\left\{-\sum_{f_i=q,g} \int \mathrm{d}\Phi_1 \Theta\left(t(\Phi_1) - t\right) \frac{\mathcal{D}_{ij}^{(\mathrm{PS})}}{\mathcal{B}}\right\}$$

Cross section up to first emission

$$\mathrm{d}\sigma^{(\mathrm{PS})} = \mathrm{d}\Phi_B \mathcal{B}\left[\underbrace{\Delta^{(\mathrm{PS})}(t_0)}_{\mathrm{unresolved}} + \underbrace{\sum_{ij}\sum_{f_i}\int_{t_0}^{\mu_F^2}\mathrm{d}\Phi_1 \frac{\mathcal{D}^{(\mathrm{PS})}_{ij}}{\mathcal{B}}\Delta^{(\mathrm{PS})}(t)}_{\mathrm{resolved}}\right]$$

ME+PS merging at NLO

Merging and matching fixed-order and resummation: Classification

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@LO merging

- Multiple LO+PS simulations for processes of different jet multiplicity
 e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

ME+PS merging at NLO

Merging and matching fixed-order and resummation: Classification

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@LO merging

- Multiple LO+PS simulations for processes of different jet multiplicity
 e.g. W, Wj, Wjj, ...
- ► Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

 Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj,...

Objectives:

- combine into one inclusive sample
- preserve NLO accuracy for jet observables

	Recap: NLO+PS matching •000000		
From fixed o	order to resummation		

Problem

- Applying PS resummation to LO event is simple
- ► Can the same simply be done separately for \mathcal{B} and $\mathcal{V} + \mathcal{I}$ and $\mathcal{R} \mathcal{D}$ at NLO? Different observable dependence in \mathcal{R} and \mathcal{D} but if showered separately \Rightarrow "double counting"

Solution: Let's in the following ...

Frixione, Webber (2002)

- ▶ rewrite dσ^(NLO) a bit
- ▶ add PS resummation into the game leading to dσ^(NLO+PS) and claim that:
 - $d\sigma^{(\text{NLO}+\text{PS})} = d\sigma^{(\text{NLO})}$ to $\mathcal{O}(\alpha_s)$
 - dσ^(NLO+PS) contains the first step of a PS evolution which can then be continued trivially with a regular PS
- ▶ sketch how dσ^(NLO+PS) is being generated in MC@NLO formalism

Recap: NLO+PS matching	
000000	

From fixed order to resummation

Rewrite: Additional set of subtraction terms $\mathcal{D}^{(A)}$

$$\mathrm{d}\sigma^{(\mathrm{NLO})} = \sum_{\vec{f}_B} \mathrm{d}\Phi_B \, \bar{\mathcal{B}}^{(\mathrm{A})} + \sum_{\vec{f}_R} \int \mathrm{d}\Phi_R \, \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\mathrm{A})} \right]$$

with $\bar{\mathcal{B}}^{(A)}$ defined as:

$$\bar{\mathcal{B}}^{(A)} = \mathcal{B} + \tilde{\mathcal{V}} + \sum_{\{\tilde{\imath}j\}} \mathcal{I}^{(S)}_{\tilde{\imath}j} + \sum_{\{\tilde{\imath}j\}} \sum_{f_i = q,g} \int d\Phi_1 \left[\mathcal{D}^{(A)}_{ij} - \mathcal{D}^{(S)}_{ij} \right]$$

- $\mathcal{D}_{ij}^{(\mathrm{A})}$ must have same kinematics mapping as $\mathcal{D}_{ij}^{(\mathrm{S})}$
- Exact choice of $\mathcal{D}_{ij}^{(A)}$ will specify e.g. MC@NLO vs. POWHEG
- ► Difference between D^(A) and D^(S) will allow later to determine how much emission phase space is exponentiated

Introduction 00000	Recap: NLO+PS matching	Recap: ME+PS merging 00000	ME+PS merging at NLO 0000000000000000000	
From fixed o	order to resummation			
Mast	er formula for NLO+	PS up to first emiss	sion	
$\mathrm{d}\sigma^{(}$	$^{\rm NLO+PS)} = \sum_{\vec{f}_B} \mathrm{d}\Phi_B \bar{\mathcal{B}}^{(\mathrm{A})}$	$(\Phi_B) \left[\underbrace{\Delta^{(A)}(t_0)}_{\text{unresolved}} + \sum_{\{\tilde{\imath\jmath}\}} \right]$	$\sum_{f_i} \int_{t_0} \mathrm{d}\Phi_1 \underbrace{\frac{\mathcal{D}_{ij}^{(\mathrm{A})}}{\mathcal{B}} \Delta^{(\mathrm{A})}(t)}_{\text{resolved, singular}}$]
	$+ \sum_{\vec{f}_R} \mathrm{d}\Phi_R$	$\left[\mathcal{R}(\Phi_R) - \sum_{ij} \mathcal{D}_{ij}^{(A)}(\Phi_R) \right]$	()	

resolved, non-singular $\equiv \mathcal{H}^{(A)}$

- To $\mathcal{O}(\alpha_s)$ this reproduces $d\sigma^{(\text{NLO})}$ including the correction term
- Event generation in the following way:
 - ▶ Generate seed event according to $\bar{\mathcal{B}}^{(A)}$ or $\mathcal{H}^{(A)}$ according to their XS
 - ▶ Second line (" \mathbb{H} -event"): kept as-is → resolved, non-singular term
 - First line ("S-event"): from one-step PS with $\Delta^{(A)}$ \Rightarrow emission (resolved, singular) or no emission (unresolved) above t_0
- ▶ Resolved cases: Subsequent emissions can be generated by ordinary PS

0		

Recap: NLO+PS matching

Recap: ME+PS merging 00000 ME+PS merging at NLO

Conclusions

Special case: MC@NLO

To prove NLO accuracy:

 $\mathcal{D}^{(\mathrm{A})}$ needs to be identical in shower algorithm and real-emission events

Original idea: $\mathcal{D}^{(A)} = PS$ splitting kernels

Frixione, Webber (2002)

- + Shower algorithm for Born-like events easy to implement
- "Non-singular" piece $\mathcal{R} \sum_{ij} \mathcal{D}_{ij}^{(A)}$ is actually singular:
 - Collinear divergences subtracted by splitting kernels
 - Remaining soft divergences as they appear in non-trivial processes at sub-leading N_c

Workaround: *G*-function dampens soft limit in non-singular piece ⇔ Loss of formal NLO accuracy (but heuristically only small impact)

Alternative idea: $\mathcal{D}^{(A)}$ = Catani-Seymour dipole subtraction terms $\mathcal{D}^{(S)}$

(only potential difference: phase space cuts)

Höche, Krauss, Schönherr, FS (2011)

- + "Non-singular" piece fully free of divergences
- Splitting kernels in shower algorithm become negative

Solution: Weighted $N_C = 3$ one-step PS based on subtraction terms

↓ Used in the following

	Recap: NLO+PS matching		
Special case: P	OWHEG		

Original POWHEG

Choose additional subtraction terms as

$$\mathcal{D}_{ij}^{(A)}(\Phi_R) \to \rho_{ij}(\Phi_R) \mathcal{R}(\Phi_R) \quad \text{where} \quad \rho_{ij}(\Phi_R) = \frac{\mathcal{D}_{ij}^{(S)}(\Phi_R)}{\sum \mathcal{D}_{vp}^{(S)}(\Phi_R)}$$

(C)

- Ill-term vanishes
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

▶ Subtract arbitrary regular piece from *R* and generate separately

$$\mathcal{D}_{ij}^{(A)}(\Phi_R) \to \rho_{ij}(\Phi_R) \ [\mathcal{R}(\Phi_R) - \mathcal{R}^r(\Phi_R)] \qquad \text{where} \qquad \rho_{ij} \text{ as above}$$

- ► Allows to generate the non-singular cases of *R* without underlying *B*
- More control over how much is exponentiated

Recap: NLO+PS matching		
000000		

Results for W + n-jet production at the LHC

ME+PS merging at NLO

Merging and matching fixed-order and resummation: Classification

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@LO merging

- Multiple LO+PS simulations for processes of different jet multiplicity
 e.g. W, Wj, Wjj, ...
- ► Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

 Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj,...

Objectives:

- combine into one inclusive sample
- preserve NLO accuracy for jet observables

ME+PS merging at NLO

Merging and matching fixed-order and resummation: Classification

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@LO merging

- Multiple LO+PS simulations for processes of different jet multiplicity
 e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj,...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

		Recap: ME+PS merging ●0000	
Tree-level M	E+PS merging		

Main idea

Phase space slicing for QCD radiation in shower evolution

- Hard emissions $Q_{ij,k}(z,t) > Q_{cut}$
 - Events rejected
 - Compensated by events starting from higher-order ME (regularised by Q_{cut})
 - \Rightarrow Splitting kernels replaced by exact real emission matrix elements

$$\frac{8\pi\alpha_s}{2p_ip_j}\mathcal{K}_{ij,k}(z,t) \quad \to \quad \frac{8\pi\alpha_s}{2p_ip_j}\mathcal{K}_{ij,k}^{\mathrm{ME}}(z,t) \;=\; \frac{\mathcal{R}_{ij,k}}{\mathcal{B}}$$

► Soft/collinear emissions $Q_{ij,k}(z,t) < Q_{cut}$ ⇒ Retained from parton shower $\mathcal{K}_{ij,k}(z,t) = \mathcal{K}_{ij,k}^{PS}(z,t)$

Note

Boundary determined by "jet criterion" $Q_{ij,k}$

- Has to identify soft/collinear divergences in MEs, like jet algorithm
- Otherwise arbitrary

Parton shower on top of high-multi ME

Translate ME event into shower language

Why?

- Need starting scales t for PS evolution
- Have to embed existing emissions into PS evolution

Problem: ME only gives final state, no history

Solution: Backward-clustering (running the shower reversed), similar to jet algorithm:

- 1. Select last splitting according to shower probablities
- 2. Recombine partons using inverted shower kinematics \rightarrow N-1 particles + splitting variables for one node
- 3. Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$
- 4. Repeat 1 3 until core process $(2 \rightarrow 2)$

Truncated shower

- Shower each (external and intermediate!) line between determined scales
- "Boundary" scales: factorisation scale μ_F^2 and shower cut-off t_o

		Recap: ME+PS merging ○○●○○	
Master formula			
Crosss	ection up to first e	mission in MF+PS	

$$d\sigma = d\Phi_B B \left[\underbrace{\Delta^{(PS)}(t_0, \mu^2)}_{\text{unresolved}} + \sum_{ij,k} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} dt \int_{z_-}^{z_+} dz \int_{0}^{2\pi} \frac{d\phi}{2\pi} \Delta^{(PS)}(t, \mu^2) \right] \\ \times \left(\underbrace{\frac{8\pi \alpha_s}{2p_i p_j} \mathcal{K}^{(PS)}_{ij,k}(z, t) \Theta(Q_{\text{cut}} - Q_{ij,k})}_{\text{resolved}, \text{PS domain}} + \underbrace{\frac{R_{ij,k}}{B} \Theta(Q_{ij,k} - Q_{\text{cut}})}_{\text{resolved}, \text{ME domain}} \right) \right]$$

Features

- LO weight B for Born-like event
- Unitarity slightly violated due to mismatch of $\Delta^{(PS)}$ and R/B \ldots] \approx 1 \Rightarrow LO cross section only approximately preserved
- Unresolved emissions as in parton shower approach
- Resolved emissions now sliced into PS and ME domain
- Only for one emission here, but possible up to high number of emissions

ME+PS merging at NLO 000000000000000 Conclusions

Features and shortcomings

Example

Diphoton production at Tevatron

- Recently published by DØ Phys.Lett.B690:108-117,2010
- Isolated hard photons
- Azimuthal angle between the diphoton pair

ME+PS simulation using SHERPA with QCD+QED interleaved shower and merging

Höche, Schumann, FS (2010)

Conclusions

Shapes described very well even for this non-trivial process/observable for both:

- Hard region, e.g. $\Delta \Phi_{\gamma\gamma} \rightarrow 0$
- Soft region, e.g. $\Delta \Phi_{\gamma\gamma} \rightarrow \pi$

Total cross section too low \Rightarrow Virtual MEs needed

ME+PS merging at NLO

Merging and matching fixed-order and resummation: Classification

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@LO merging

- Multiple LO+PS simulations for processes of different jet multiplicity
 e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity k e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

ME+PS merging at NLO

Merging and matching fixed-order and resummation: Classification

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@LO merging

- Multiple LO+PS simulations for processes of different jet multiplicity
 e.g. W, Wj, Wjj, ...
- ► Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

- ▶ Multiple NLO+PS simulations for processes of different jet multiplicity *k* e.g. *W*, *Wj*, *Wjj*, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Recap: NLO+PS matchin 0000000 Recap: ME+PS merging

ME+PS merging at NLO

Conclusions

Basic idea

Concepts continued from ME+PS merging at LO

- ► For each event select jet multiplicity *k* according to its inclusive NLO cross section
- Reconstruct branching history and nodal scales $t_0 \dots t_k$
- Truncated vetoed parton shower, but with peculiarities (cf. below)

Differences for NLO merging

- For each event select type (S or ℍ) according to absolute XS ⇒ Shower then runs differently
- ► S event:
 - 1. Generate MC@NLO emission at t_{k+1}
 - 2. Truncated "NLO-vetoed" shower between t₀ and t_k: First hard emission is only ignored, no event veto
 - 3. Continue with vetoed parton shower

► Ⅲ event: (Truncated) vetoed parton shower as in tree-level ME+PS

		ME+PS merging at NLO OOOOOOOOOOOOOO	
Master formula			

ME+PS@NLO prediction for combining NLO+PS samples of multiplicities n and n + 1

2

		Recap: ME+PS merging 00000	ME+PS merging at NLO	
Results for e^{-1}	$^+e^- \rightarrow$ hadrons: Setup			

General setup

- ▶ ME generators (tree-level and dipole subtraction): AMEGIC++ and COMIX
- Virtual corrections from BLACKHAT
- ▶ MC@NLO-like generator built into SHERPA with full colour treatment
- Parton shower based on Catani-Seymour dipole factorisation
- ► Hadronisation model AHADIC++, not tuned for ME+PS@NLO yet ⇒ Deviations in hadronisation sensitive regions
- Comparison to ALEPH and OPAL measurements: Eur. Phys. J. C35 (2004), 457-486, Eur.Phys.J. C40 (2005), 287-316, Eur. Phys. J. C20 (2001), 601-615

Comparison of three runs

MC@NLO:	NLO+PS prediction for $2 \rightarrow 2$
MENLOPS:	MC@NLO for $2 \rightarrow 2 + ME+PS$ up to $2 \rightarrow 6$
	μ_R variation indicated by blue band
MEPS@NLO:	MC@NLO for $2 \rightarrow 2, 3, 4$ + ME+PS for $2 \rightarrow 5, 6$
	μ_R variation indicated by orange band

Results for $e^+e^- \rightarrow$ hadrons: Differential Durham jet rates

- Significant reduction of MEPs@NLO scale uncertainties in perturbative region
- Improved agreement with experimental data

	ME+PS merging at NLO	

Results for $e^+e^- \rightarrow$ hadrons: Differential Durham jet rates

Scale uncertainty not reduced, due to sensitivity to $2 \rightarrow 5, 6$ partons (LO)

	ME+PS merging at NLO	
	00 00000000 0000000	

Results for $e^+e^- \rightarrow$ hadrons: Thrust event shape

	ME+PS merging at NLO	

Results for $e^+e^- \rightarrow$ hadrons: Total jet broadening event shape

	ME+PS merging at NLO	

Results for $e^+e^- \rightarrow$ hadrons: C parameter event shape

	ME+PS merging at NLO	
	000000000000000000000000000000000000000	

Results for $e^+e^- \rightarrow$ hadrons: Sphericity event shape

Results for $e^+e^- \rightarrow$ hadrons: Fou<u>r-jet angles</u>

		ME+PS merging at NLO	
Results for W	7 + jets: Setup		

General setup

- ► ME generators (tree-level and dipole subtraction): AMEGIC++ and COMIX
- Virtual corrections from BLACKHAT
- MC@NLO-like generator built into SHERPA with full colour treatment
- Parton shower based on Catani-Seymour dipole factorisation
- Hadronisation and multiple parton interactions not taken into account (observables almost insensitive)
- CT10 PDF set
- Central scales $\mu_{F,R}$ from clustering onto $2 \rightarrow 2$ configuration

Comparison of three runs

MC@NLO:	NLO+PS prediction for $2 \rightarrow 2$
MENLOPS:	MC@NLO for $2 \rightarrow 2 + ME+PS$ up to $2 \rightarrow 6$
	$\mu_{F,R}$ variation indicated by blue band
MEPS@NLO:	MC@NLO for $2 \rightarrow 2, 3, 4 + \text{ME+PS}$ for $2 \rightarrow 5, 6$
	$\mu_{F,R}$ variation indicated by orange band

ME+PS merging at NLO

Results for W + jets: Jet multiplicities

- ► Comparison to ATLAS measurement Phys.Rev. D85 (2012), 092002
- Significant reduction of MEPs@NLO scale uncertainties in "NLO" multiplicities
- Improved agreement with experimental data

	ME+PS merging at NLO	

Results for W + jets: Leading jet transverse momentum

Results for W + jets: Subleading jets transverse momenta

	ME+PS merging at NLO	

Results for W + jets: Scalar transverse momentum sum H_T

• High H_T region affected by higher multiplicities \Rightarrow Larger scale uncertainty

	ME+PS merg

Results for W + jets: Angular correlations

Pure MC@NLO simulation misses correlations between the two leading jets

		Conclusi
Conclusions		

Summary

- ► Several approaches for higher-order QCD effects have been introduced:
 - NLO+PS matching for NLO and parton showers
 - ME+PS merging of high-multiplicity tree-level matrix-elements with parton showers
 - ME+PS@NLO merging, combining the two approaches above
- ▶ Results have been presented for ME+PS@NLO in $ee \rightarrow$ hadrons at LEP and *W*+jets production at the LHC
- ▶ Significant improvements in the description of experimental data have been found

Outlook

- ▶ Apply ME+PS@NLO to other processes (e.g. $gg \rightarrow h$ +jets, $t\bar{t}$ +jets, diboson+jets)
- Devise sound prescription to study uncertainties (perturbative, resummation, non-perturbative)
- Incorporate EW NLO corrections into matching and merging

Correction term of ME+PS@NLO wrt MC@NLO at given jet multiplicity k:

$$\begin{split} \langle O \rangle_{n+k}^{\rm corr} &= \int \mathrm{d} \Phi_{n+k+1} \, \Theta(Q_{n+k+1} - Q_{\rm cut}) \, \tilde{\Delta}_{n+k+1}^{\rm (PS)}(t_c, \mu_Q^2) \, O_{n+k+1} \\ &\times \left\{ \tilde{\mathrm{D}}_{n+k}^{(\mathrm{A})} \left[1 - \frac{\tilde{\mathrm{B}}_{n+k}^{(\mathrm{A})}}{\mathrm{B}_{n+k}} \, \frac{\Delta_{n+k}^{(\mathrm{A})}(t_{n+k+1}, t_{n+k})}{\Delta_{n+k}^{(\mathrm{PS})}(t_{n+k+1}, t_{n+k})} \right] \\ &- \mathrm{B}_{n+k+1} \left[1 - \frac{\tilde{\mathrm{B}}_{n+k+1}^{(\mathrm{A})}}{\mathrm{B}_{n+k+1}} \frac{\Delta_{n+k+1}^{(\mathrm{A})}(t_c, t_{n+k+1})}{\Delta_{n+k+1}^{(\mathrm{PS})}(t_c, t_{n+k+1})} \right] \right\} \end{split}$$

with compound subtraction term

$$\tilde{\mathbf{D}}_{n+k}^{(\mathbf{A})} = \mathbf{D}_{n+k}^{(\mathbf{A})} \Theta(t_{n+k} - t_{n+k+1}) + \mathbf{B}_{n+k}^{(\mathbf{A})} \sum_{i=n}^{n+k-1} \mathbf{K}_i \Theta(t_i - t_{n+k+1}) \Theta(t_{n+k+1} - t_{i+1}) ,$$