

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

NLO + parton shower matching and merging in four-lepton + jets production

Frank Siegert

Universität Mainz, Theorie-Palaver, 12.11.2013

- We want: Simulation of $pp \rightarrow$ full hadronised final state
- Factorisation into stages: MC event representation
- We know from first principles:
 - Hard scattering at fixed order in perturbation theory
 - (Matrix Element)
 - Approximate resummation of QCD corrections to all orders (Parton Shower)
- Missing bits: Hadronisation/Underlying event (ignored in this talk)

- We want: Simulation of $pp \rightarrow$ full hadronised final state
- Factorisation into stages: MC event representation
- We know from first principles:
 - Hard scattering at fixed order in perturbation theory
 - (Matrix Element)
 - Approximate resummation of QCD corrections to all orders (Parton Shower)
- Missing bits: Hadronisation/Underlying event (ignored in this talk)

- We want: Simulation of $pp \rightarrow$ full hadronised final state
- Factorisation into stages: MC event representation
- We know from first principles:
 - Hard scattering at fixed order in perturbation theory
 - (Matrix Element)
 - Approximate resummation of QCD corrections to all orders (Parton Shower)
- Missing bits: Hadronisation/Underlying event (ignored in this talk)

Outline

Introduction to event generators
 Higher precision for parton showers
 Application to 4ℓ+0,1 jet production
 Conclusions

- We want: Simulation of $pp \rightarrow$ full hadronised final state
- Factorisation into stages: MC event representation
- We know from first principles:
 - Hard scattering at fixed order in perturbation theory
 - (Matrix Element)
 - Approximate resummation of QCD corrections to all orders (Parton Shower)

 Missing bits: Hadronisation/Underlying event (ignored in this talk)

QCD: We can only calculate parts of the perturbative series in α_s

- Exact calculations possible up to O(α²_s) for some processes
- Why is that not always enough?

Large logarithms from infrared divergences

- KLN: inclusive observables calculable at fixed-order
- If not inclusive ⇒ Finite remainders of infrared divergences:

logarithms of
$$\frac{\mu_{hard}^2}{\mu_{resolution}^2}$$
 with each $\mathcal{O}(\alpha_s)$ an become large and spoil convergence of perturbative series

 \Rightarrow Need to resum the series to all orders

Since nobody is smart enough yet, only resum the logarithmically enhanced terms: Parton shower evolution between μ_{hard}^2 and $\mu_{hadronisation}^2$

Universal collinear factorisation of QCD emissions

- Matrix element $\mathcal{M}^{(n+1)} \rightarrow \mathcal{D}_{ij}^{(PS)} = \mathcal{M}^{(n)} \times \left[\frac{1}{2p_i p_j} 8\pi \alpha_s \ \mathcal{K}_{ij}\right]$
- Radiative phase space $d\Phi^{(n+1)} = d\Phi^{(n)} \times d\Phi^{(1)} \sim d\Phi_n dt$

 \Rightarrow "Evolution variable" $t \sim 2 p_i p_j$ as measure of collinearity (e.g. angle)

Considering multiple emissions

 \rightarrow Analogy to radioactive decay

Radioactive decay

- Constant decay probability $f(t) \equiv \lambda = \text{const}$
- Survival probability $\mathcal{N}(t)$

$$-\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = \lambda \mathcal{N}(t)$$

 $\Rightarrow \mathcal{N}(t) \sim \exp(-\lambda t)$

Parton shower branching

- Branching probability $f(t) \equiv \mathcal{D}_{ij}^{(\mathrm{PS})}(t)$
- Survival probability $\mathcal{N}(t)$

$$\begin{aligned} &-\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = f(t) \, \mathcal{N}(t) \\ &\Rightarrow \mathcal{N}(t) \sim \exp\left(-\int_0^t f(t') \mathrm{d}t'\right) \end{aligned}$$

Definition of main parton shower ingredients

• "Sudakov factor" = Survival probability of ensemble between two scales:

$$\Delta(t',t'') = \prod_{\{ij\}} \exp\left(-\int_{t'}^{t''} \mathrm{d}t \ \mathcal{D}_{ij}^{(\mathrm{PS})}\right)$$

- Evolution variable *t*: not time, but collinearity from hard to soft
- Starting scale μ_Q^2 (time t = 0 in radioactive decay) defined by hard scattering
- Cutoff scale related to hadronisation scale t₀ ∼ μ²_{had}

 \Rightarrow Differential cross section (up to first emission)

$$\mathrm{d}\sigma^{(\mathrm{LO})} = \mathrm{d}\Phi_B \mathcal{B}\left[\underbrace{\Delta^{(\mathrm{PS})}(t_0, \mu_Q^2)}_{\mathrm{unresolved}} + \underbrace{\sum_{\{ij\}} \int_{t_0}^{\mu_Q^2} \mathrm{d}t \, \mathcal{D}^{(\mathrm{PS})}_{ij} \Delta^{(\mathrm{PS})}(t, \mu_Q^2)}_{\mathrm{U}}\right]$$

resolved

Definition of main parton shower ingredients

• "Sudakov factor" = Survival probability of ensemble between two scales:

$$\Delta(t',t'') = \prod_{\{ij\}} \exp\left(-\int_{t'}^{t''} \mathrm{d}t \ \mathcal{D}_{ij}^{(\mathrm{PS})}\right)$$

- Evolution variable *t*: not time, but collinearity from hard to soft
- Starting scale μ_Q^2 (time t = 0 in radioactive decay) defined by hard scattering
- Cutoff scale related to hadronisation scale t₀ ∼ μ²_{had}

\Rightarrow Differential cross section (up to first emission)

$$\mathrm{d}\sigma^{(\mathrm{LO})} = \mathrm{d}\Phi_{B} \mathcal{B}\left[\underbrace{\Delta^{(\mathrm{PS})}(t_{0}, \mu_{Q}^{2})}_{\mathrm{unresolved}} + \underbrace{\sum_{\{ij\}} \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{d}t \ \mathcal{D}_{ij}^{(\mathrm{PS})} \Delta^{(\mathrm{PS})}(t, \mu_{Q}^{2})}_{\mathrm{unresolved}}\right]$$

Definition of main parton shower ingredients

• "Sudakov factor" = Survival probability of ensemble between two scales:

$$\Delta(t',t'') = \prod_{\{ij\}} \exp\left(-\int_{t'}^{t''} \mathrm{d}t \ \mathcal{D}_{ij}^{(\mathrm{PS})}\right)$$

- Evolution variable t: not time, but collinearity from hard to soft
- Starting scale μ_Q^2 (time t = 0 in radioactive decay) defined by hard scattering
- Cutoff scale related to hadronisation scale t₀ ∼ μ²_{had}

⇒ Differential cross section (up to first emission)

$$\mathrm{d}\sigma^{(\mathrm{LO+PS})} = \mathrm{d}\Phi_B \ \mathcal{B}\left[\underbrace{\Delta^{(\mathrm{PS})}(t_0, \mu_Q^2)}_{\mathrm{unresolved}} + \underbrace{\sum_{\{ij\}} \int_{t_0}^{\mu_Q^2} \mathrm{d}t \ \mathcal{D}^{(\mathrm{PS})}_{ij} \Delta^{(\mathrm{PS})}(t, \mu_Q^2)}_{\mathbf{v}}\right]$$

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive *W* production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj,...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

\downarrow

Combination: ME+PS@NL0

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Higher precision for parton showers

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive *W* production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. *W*, *Wj*, *Wjj*, ...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

Combination: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj,...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Reminder + Notation: NLO cross section

$$\mathrm{d}\sigma^{(\mathrm{NLO})} = \mathrm{d}\Phi_B \left[\mathcal{B} + \bar{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}^{(\mathrm{S})}_{(ij)} \right] + \mathrm{d}\Phi_R \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}^{(\mathrm{S})}_{ij} \right]$$

Idea of NLO+PS matching

d

- Apply PS separately for \mathcal{B} and \mathcal{V} and \mathcal{R} at NLO? \Rightarrow **double counting**
- Instead: subtract additional PS(-like) terms $\mathcal{D}_{ii}^{(A)}$

$$\begin{split} \sigma^{(\text{NLO sub)}} &= \mathrm{d}\Phi_B \ \bar{\mathcal{B}}^{(\mathrm{A})} \ + \ \mathrm{d}\Phi_R \left[\ \mathcal{R} - \sum \mathcal{D}_{ij}^{(\mathrm{A})} \ \right] \\ &\text{with } \bar{\mathcal{B}}^{(\mathrm{A})} \ = \ \mathcal{B} + \bar{\mathcal{V}} + \sum \mathcal{I}_{(ij)}^{(\mathrm{S})} + \sum \int \mathrm{d}t \left[\mathcal{D}_{ij}^{(\mathrm{A})} - \mathcal{D}_{ij}^{(\mathrm{S})} \right] \end{split}$$

and add them back by PS(-like) resummation on ${\rm d}\,\sigma^{\rm (NLO\,sub)}$ events:

$$\begin{split} \mathrm{d}\sigma^{(\mathrm{NLO+PS})} &= \mathrm{d}\Phi_B \; \bar{\mathcal{B}}^{(\mathrm{A})} \left[\underbrace{\Delta^{(\mathrm{A})} \left(t_0, \mu_Q^2 \right)}_{\text{unresolved}} + \underbrace{\sum \int_{t_0}^{\mu_Q^2} \mathrm{d}t \; \frac{\mathcal{D}_{ij}^{(\mathrm{A})}}{\mathcal{B}} \Delta^{(\mathrm{A})} \left(t, \mu_Q^2 \right)}_{\text{resolved, singular}} \right] \\ &+ \; \mathrm{d}\Phi_R \; \underbrace{\left[\mathcal{R} - \sum \mathcal{D}_{ij}^{(\mathrm{A})} \right]}_{\text{resolved, non-singular} \equiv \mathcal{H}^{(\mathrm{A})}} \end{split}$$

Frixione, Webber (2002)

Original idea: $\mathcal{D}^{(\mathrm{A})}$ = PS splitting kernels

- + Shower algorithm for Born-like events easy to implement
- "Non-singular" piece $\mathcal{R} \sum_{ij} \mathcal{D}_{ij}^{(A)}$ is actually singular:
 - Collinear divergences subtracted by splitting kernels ✓
 - Remaining soft divergences in non-trivial processes at sub-leading N_c

Workaround: *G*-function dampens soft limit in non-singular piece ⇔ Loss of formal NLO accuracy (but heuristically only small impact) Höche, Krauss, Schönherr, FS (2011)

Alternative idea: $\mathcal{D}^{(\mathrm{A})} = \text{Catani-Seymour} \\ \text{subtraction terms } \mathcal{D}^{(\mathrm{S})}$

- + "Non-singular" piece fully free of divergences
- Splitting kernels in shower algorithm become negative

Solution: Weighted $N_C = 3$ one-step PS based on subtraction terms

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive *W* production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. *W*, *Wj*, *Wjj*, ...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

Combination: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. *W*, *Wj*, *Wjj*, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive *W* production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj,...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

Combination: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. *W*, *Wj*, *Wjj*, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

TECHNISCHE UNIVERSITAT DESIGNATION Parton shower on top of high-multi ME

Translate ME event into shower language

Why?

- Need starting scales t for PS evolution
- Have to embed existing emissions into PS evolution

Problem: ME only gives final state, no history Solution: Backward-clustering (running the shower reversed), similar to jet algorithm:

- 1 Select last splitting according to shower probablities
- 2 Recombine partons using inverted shower kinematics \rightarrow N-1 particles + splitting variables for one node
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$
- 4 Repeat 1 3 until core process $(2 \rightarrow 2)$

Truncated shower

- Shower each (external and intermediate!) line between determined scales
- "Boundary" scales: resummation scale μ_Q^2 and shower cut-off t_0

Main idea

Catani, Krauss, Kuhn, Webber (2001); Höche, Krauss, Schumann, FS (2009) Phase space slicing for OCD radiation in shower evolution

- Hard emissions $Q_{ij}(z, t) > Q_{cut}$
 - Events rejected
 - Compensated by events starting from higher-order ME regularised by Q_{cut}
 - \Rightarrow Splitting kernels replaced by exact real-emission matrix elements

$$\mathcal{D}_{ij}^{(\mathrm{PS})} \to \mathcal{R}_{ij}$$

(But Sudakov form factors $\Delta^{(PS)}$ remain unchanged)

• Soft/collinear emissions $Q_{ij,k}(z,t) < Q_{cut}$ $\Rightarrow \text{Retained from parton shower} \qquad \mathcal{D}_{ij}^{(\text{PS})} = \mathcal{B} \times \left[\frac{1}{2p_i p_j} 8\pi \alpha_s \ \mathcal{K}_{ij}(p_i, p_j)\right]$

$$d\sigma^{(\text{ME+PS)}} = d\Phi_B \mathcal{B}\left[\underbrace{\Delta^{(\text{PS})}(t_0, \mu_Q^2)}_{\text{unresolved}} + \sum_{\{ij\}} \int_{t_0}^{\mu_Q^2} dt \,\Delta^{(\text{PS})}(t, \mu^2) \right] \\ \times \left(\underbrace{\mathcal{D}_{ij}^{(\text{PS})}}_{\text{resolved}, \text{PS domain}} \Theta(Q_{\text{cut}} - Q_{ij}) + \underbrace{\mathcal{R}_{ij}}_{\text{Resolved}, \text{ME domain}} \Theta(Q_{ij} - Q_{\text{cut}})\right)$$

Example

Diphoton production at Tevatron

- Measured by CDF
 Phys.Rev.Lett. 110 (2013) 101801
- Isolated hard photons
- Azimuthal angle between the photons

ME+PS simulation using SHERPA vs. (N)NLO

Conclusions

Shapes described very well even for this non-trivial process/observable for both:

- Hard region, e.g. $\Delta \Phi_{\gamma\gamma} \rightarrow 0$
- Soft region, e.g. $\Delta \Phi_{\gamma\gamma} \rightarrow \pi$

Scale variations high \Rightarrow NLO needed

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj,...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

Combination: ME+PS@NLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive *W* production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj,...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. *W*, *W j*, *W jj*, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Basic idea

Höche, Krauss, Schönherr, FS (2012)

Concepts continued from NLO+PS and ME+PS@LO

- For each event select jet multiplicity *k* according to its inclusive NLO cross section
- Reconstruct branching history and nodal scales t₀...t_k
- Truncated vetoed parton shower, but with peculiarities (cf. below)

Differences for NLO merging

- For each event select type (S or ℍ) according to absolute XS ⇒ Shower then runs differently
- S event:
 - 1
 - Generate MC@NLO emission at t_{k+1}
 - 2 Truncated "NLO-vetoed" shower between t_0 and t_k : First hard emission is only ignored, no event veto
 - 3 Continue with vetoed parton shower
- Ⅲ event: (Truncated) vetoed parton shower as in tree-level ME+PS

For the sake of completeness...

ME+PS@NLO prediction for combining NLO+PS samples of multiplicities n and n + 1

$$\begin{aligned} \mathrm{d}\sigma^{(\mathrm{ME}+\mathrm{PS@NLO})} &= \mathrm{d}\Phi_n \ \bar{\mathrm{B}}_n^{(\mathrm{A})} \Big[\Delta_n^{(\mathrm{A})}(t_c, \mu_Q^2) + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \ \frac{\mathrm{D}_n^{(\mathrm{A})}}{\mathrm{B}_n} \Delta_n^{(\mathrm{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathrm{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\Phi_{n+1} \ \mathrm{H}_n^{(\mathrm{A})} \Delta_n^{(\mathrm{PS})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathrm{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\Phi_{n+1} \ \bar{\mathrm{B}}_{n+1}^{(\mathrm{A})} \ \left(1 + \frac{\mathrm{B}_{n+1}}{\mathrm{B}_{n+1}} \int_{t_n+1}^{\mu_Q^2} \mathrm{d}\Phi_1 \ \mathrm{K}_n \right) \Delta_n^{(\mathrm{PS})}(t_{n+1}, \mu_Q^2) \Theta(Q_{n+1} - Q_{\mathrm{cut}}) \\ &- \underbrace{\mathrm{MC} \text{ counterterm} \to \mathrm{NLO-vetoed shower}}_{\mathrm{MC} \mathrm{counterterm} \to \mathrm{NLO-vetoed shower}} \\ &\times \left[\Delta_{n+1}^{(\mathrm{A})}(t_c, t_{n+1}) + \int_{t_c}^{t_n+1} \mathrm{d}\Phi_1 \ \frac{\mathrm{D}_{n+1}^{(\mathrm{A})}}{\mathrm{B}_{n+1}} \Delta_{n+1}^{(\mathrm{A})}(t_{n+2}, t_{n+1}) \ \right] \\ &+ \mathrm{d}\Phi_{n+2} \ \mathrm{H}_{n+1}^{(\mathrm{A})} \Delta_{n+1}^{(\mathrm{PS})}(t_{n+2}, t_{n+1}) \Delta_n^{(\mathrm{PS})}(t_{n+1}, \mu_Q^2) \Theta(Q_{n+1} - Q_{\mathrm{cut}}) + \dots \end{aligned}$$

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive *W* production)
- Objectives:
 - avoid double counting
 - inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj,...)
- Objectives:
 - combine into inclusive sample
 - preserve resummation accuracy

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. *W*, *W j*, *W jj*, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Precise predictions for $pp \rightarrow \ell \ell \nu \nu$ + jets

- As signal: SM measurements, vector-boson scattering, anomalous gauge couplings, ...
- As background: Higgs production, BSM searches

Background to $H \to WW^* \to \ell^+ \nu \ell^- \bar{\nu}$ + jets

Higgs analyses in exclusive 0, 1, 2-jet bins (\Rightarrow jet vetoes)

- \rightarrow Better control over backgrounds (WW^* vs. $t\bar{t}$)
- \rightarrow Disentangle production modes ($gg \rightarrow H$ vs. VBF)

Non-trivial theoretical issues

- Precise predictions for jet production ⇒ beyond inclusive NLO QCD
- Exclusive jet bins ⇒ Sudakov effects, resummation
- Offshell WW^{*} production ⇒ non-resonant and interference effects
- Loop-induced processes like $gg \rightarrow WW^*$ sizeable in Higgs signal regions

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, FS; arXiv: 1309.0500

Toolkit

- SHERPA including its automated dipole subtraction and merging a la MEPS@NLO
- OPENLOOPS automated 1-loop QCD matrix elements Cascioli, Maierhöfer, Pozzorini; arXiv:1111.5206
 including the COLLIER tensor integral reduction Denner, Dittmaier, Hofer; in prep.
- ⇒ Full QCD NLO automation with SHERPA+OPENLOOPS Already available within ATLAS and CMS

Phenomenological setup: $pp \rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu$ + jets

- Predictions for LHC $\sqrt{s} = 8$ TeV, using CT10 PDFs
- QCD NLO accuracy for $\ell \ell \nu \nu + 0, 1$ jets
- Squared quark-loop contributions merged for + 0, 1 jets
- Full off-shell, interference and spin-correlation effects
- NLO+PS matching to the parton shower, MEPS@NLO merging into inclusive sample
- Central scale choice: $\mu_0 = \frac{1}{2} (E_{T,W^+} + E_{T,W^-})$
- CKKW-like scale prescription in merged jet emissions: $\alpha_s(k_{\perp})$
- Independent factor-2 variations of $\mu_{F,R}$ and factor- $\sqrt{2}$ of resummation scale μ_Q

Comparison of different simulation levels

NLO simulations	0-jet	1-jet	2-jet
NLO 4ℓ	NLO	LO	-
$NLO 4\ell + 1j$	-	NLO	LO
MC@NLO 4 <i>l</i>	NLO+PS	LO+PS	PS
MC@NLO $4\ell + 1j$	-	NLO+PS	LO+PS
MEPS@NLO $4\ell + 0, 1j$	NLO+PS	NLO+PS	LO+PS
x 2 · · · · • •	0.1.1		
LOOP ² simulations	0-jet	1-jet	2-jet
$\frac{\text{LOOP}^2 \text{ simulations}}{\text{LOOP}^2 4\ell}$	LO	1-jet -	2-jet -
$\frac{\text{LOOP}^2 \text{ simulations}}{\text{LOOP}^2 4\ell}$ $\frac{1}{\text{LOOP}^2 4\ell + 1j}$	LO -	-jet - LO	2-jet - -
$\frac{\text{LOOP}^2 4\ell}{\text{LOOP}^2 4\ell + 1j}$ $\frac{\text{LOOP}^2 4\ell + 1j}{\text{LOOP}^2 + \text{PS} 4\ell}$	LO - LO+PS	I-jet - LO PS	2-jet - - PS
$\begin{tabular}{ c c c c c } \hline LOOP^2 & simulations \\ \hline LOOP^2 & 4\ell \\ \hline LOOP^2 & 4\ell + 1j \\ \hline LOOP^2 + PS & 4\ell \\ \hline LOOP^2 + PS & 4\ell + 1j \\ \hline \end{tabular}$	LO LO+PS -	-jet - LO PS LO+PS	2-jet - - PS PS

- NLO 4 ℓ and MC@NLO 4 ℓ only LO accurate, underestimate hard p_{\perp} tail
- Resummation necessary for $p_{\perp} \rightarrow 0$ (Sudakov logs)
 - NLO $4\ell \sim 20\%$ effects at $p_{\perp} = 5$ GeV
 - − NLO $4\ell + 1j$ partially includes logs \Rightarrow reduced effect
- Harder tails in fixed-order due to μ_R not dynamic with jet p_⊥
- *H*_T sensitive to combination of different jet multiplicities ⇒ merging crucial

Basic WW* **analysis**

Exclusive 0-jet bin

- Few-% agreement between MC@NLO and MEPS@NLO
- Moderate Sudakov effects in comparison of NLO 4l and MC@NLO 4l
- Low uncertainties → good control wrt higher orders/logs

Inclusive 1-jet bin

- Sizable differences between MC@NLO and MEPS@NLO, similar to jet p⊥
- NLO 4ℓ + 1j excess in tail due to αs scale differences again

- Finite, gauge-invariant subset of NNLO contributions: squared quark loops like $gg \rightarrow 4\ell$
- Relevant at LHC due to gluonic initial states, particularly in Higgs signal regions

0-jet production: Examples for $gg \rightarrow 4\ell$ diagrams

1-jet production

- For the first time we merge 0-jet and 1-jet squared-loop contributions
- Tree-level merging techniques since all MEs are finite
- Shower on top of $gg \rightarrow 4\ell \Rightarrow$ consistency requires MEs for qg, $\bar{q}g$ and $q\bar{q}$ initial states
- Example diagrams (requirement: vector bosons coupling to pure quark loop)

- Inclusive contribution of a few %
- Shape distortions: more significant impact in Higgs signal region (e.g. low $m_{\ell\ell}$)

Merging effects

- Inclusion of $\text{LOOP}^2 4\ell + 1j$ in merging: harder p_{\perp} spectrum
- Significant reduction of uncertainties (wrt resummation scale) in high- p_{\perp} region

Non-gluonic initial states

- Inclusion of quark-channels → harder tail
- Naturally, lower Sudakov suppression without quark splittings
- Shape distortion
 ⇒ opposite effects in 0/1 jet bins

Rivet implementation of Higgs analyses

- 8 separate analyses: {ATLAS,CMS} × {0-jet, 1-jet} × {signal region, control region}
- Differential predictions in relevant observables: p^j_⊥, m_{ℓℓ}, Δφ_{ℓℓ}, m_T

Findings

- Different simulation levels agree well in 0-jet bin (where they are NLO accurate)
- Fixed-order agrees with matched/merged predictions in most regions \rightarrow Sudakov logs not dominant, except e.g. $\Delta \phi_{\ell\ell} \rightarrow \pi$
- Pure MC@NLO predictions underestimates rate in 1-jet bins
- Uncertainty bands for best prediction (MEPS@NLO) from $\mu_{R,F} \oplus \mu_Q$ variations at the few-% level

Example from ATLAS analysis

Example from CMS analysis

Signal/control cross sections in exclusive jet bins

- Relevant for background extrapolation from control to signal region in data-driven methods
- Example: ATLAS analysis

0-jet bin	NLO 4ℓ $(+1j)$	MC@NLO 4ℓ	MEPS@NLO $4\ell + 0, 1j$	$MEPS@LOOP^2 4\ell + 0, 1j$
$\sigma_{\rm S}$ [fb]	34.28(9) + 2.1% - 1.6%	$32.52(8) \begin{array}{c} +2.1\% \\ -0.8\% \\ -0.7\% \end{array}$	$33.81(12) {}^{+1.4\%}_{-2.2\%} {}^{+2.0\%}_{-0.4\%}$	1.98(2) + 23% + 27% - 16.5% - 20%
$\sigma_{\rm C}$ [fb]	55.76(9) + 2.0% - 1.7%	$52.28(9) \begin{array}{c} +1.4\% \\ -0.7\% \\ -1.1\% \end{array}$	$54.18(15) \begin{array}{c} +1.4\% \\ -1.9\% \\ -0.4\% \end{array}$	$2.41(2) \begin{array}{c} +22\% \\ -17\% \\ -18\% \end{array}$
<u></u>				
1-jet bin	NLO 4ℓ $(+1j)$	MC@NLO 4ℓ	MEPS@NLO $4\ell + 0, 1j$	MEPS@LOOP ² $4\ell + 0, 1j$
1-jet bin $\sigma_{\rm S}$ [fb]		MC@NLO 4 <i>l</i> 8.02(4) +8.5% +0% -6.4% -3.1%	$\frac{\text{MEPS@NLO }4\ell + 0, 1j}{9.37(9) \begin{array}{c} +2.6\% \\ -2.7\% \end{array}}$	$\frac{\text{MEPS} @\text{LOOP}^2 \ 4\ell + 0, 1j}{0.46(1) \ \overset{+40\%}{_{-18\%}} \ \overset{+2.2\%}{_{-6.3\%}}}$

- Merged sample reproduces individual NLO cross sections well
- Combined uncertainty on MEPS@NLO best prediction around 3(5)% in 0(1)-jet bin
- LOOP² effects larger in **S**ignal than in **C**ontrol region

Summary

- Brief introduction to Monte-Carlo event generators and parton showers
- MEPS@NLO merging as state-of-the-art event simulation method at the hadron level
- Application of MEPS@NLO to $\ell\ell\nu\nu + 0, 1$ jets production
- Inclusion of loop-induced contributions in both multiplicities by MEPS@LOOP²
- Analysis of predictions and uncertainties as Higgs background

Outlook

 Methods have already been applied to other processes (W/Z+jets, tt+jets, ttbb), more phenomenology studies being worked on

Anzeige

- SHERPA 2.0.0 released three weeks ago
- For experimentalists: Includes all features presented here and is available to the LHC experiments together with OPENLOOPS
- For theorists: Interface only your virtual ME, rest comes for free! (tree-level MEs, subtraction, matching, merging, spin-correlated decays)

Radioactive decay

• Constant differential decay probability

$$f(t) \equiv \lambda = \text{const}$$

- Survival probability $\mathcal{N}(t)$ $-\frac{d\mathcal{N}}{dt} = \lambda \mathcal{N}(t)$ $\Rightarrow \mathcal{N}(t) \sim \exp(-\lambda t)$
- Resummed decay probability $\mathcal{P}(t)$ $\mathcal{P}(t) = f(t) \mathcal{N}(t) \sim \lambda \exp(-\lambda t)$

Parton shower branching

- Differential branching probability $f(t) \equiv \mathcal{D}_{ij}^{(PS)}$
- Survival probability $\mathcal{N}(t)$ $-\frac{d\mathcal{N}}{dt} = f(t) \mathcal{N}(t)$ $\Rightarrow \mathcal{N}(t) \sim \exp\left(-\int_0^t f(t')dt\right)$
- Resummed branching probability $\mathcal{P}(t)$ $\mathcal{P}(t) = f(t) \mathcal{N}(t) \sim f(t) \exp\left(-\int_{0}^{t} f(t') dt'\right)$

Parton shower algorithm

- Recursively generates next emission scale t (after t_{previous}) with probability $\mathcal{P}(t, t_{\text{previous}}) = f(t) \exp \left(-\int_{t_{\text{previous}}}^{t} f(t') dt'\right)$
- Analytically: $t = F^{-1} \left[F(t_{\text{previous}}) + \log(\#_{\text{random}}) \right]$ with $F(t) = \int_{t_0}^t dt' f(t')$
- If integral/its inverse are not known: "Veto algorithm" = extension of hit-or-miss
 - Overestimate $g(t) \ge f(t)$ with known integral G(t) $\rightarrow t = G^{-1} \left[G(t_{\text{previous}}) + \log(\#_{\text{random}}) \right]$
 - Accept t with probability $\frac{f(t)}{a(t)}$ using hit-or-miss

Original POWHEG

Choose additional subtraction terms as

$$\mathcal{D}_{ij}^{(\mathrm{A})} \to \rho_{ij} \mathcal{R}$$
 where $\rho_{ij} = \frac{\mathcal{D}_{ij}^{(\mathrm{S})}}{\sum_{mn} \mathcal{D}_{mn}^{(\mathrm{S})}}$

- *H*-term vanishes ⇒ No negative weighted events
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

● Subtract arbitrary regular piece from *R* and generate separately as *H*-events

$$\mathcal{D}_{ij}^{(\mathrm{A})}(\Phi_R) \to \rho_{ij}(\Phi_R) \ \left[\mathcal{R}(\Phi_R) - \mathcal{R}^r(\Phi_R) \right] \qquad \text{where} \qquad \rho_{ij} \text{ as above}$$

- Tuning of \mathcal{R}^r to reduce exponentiation of arbitrary terms
- Allows to generate the non-singular cases of R without underlying B