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The SHERPA framework

• SHERPA framework:
Simulation of pp→ full
hadronised final state

• Factorisation into stages:
MC event representation

• We know from first principles:

– Hard scattering at fixed
order in perturbation
theory
(Matrix Element)

– Approximate
resummation of QCD
corrections to all orders
(Parton Shower)

• Remaining bits:

– Hadronisation
– Hadron decays
– Multiple parton

interactions
– QED FSR resummation
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How good physics becomes expensive

Example: Multi-jet merging

In a nutshell
→ (N)LO matrix elements for pp→ X + 0, 1, . . . , n jets

→ Combined with each other and the parton shower (PS)

• Obvious performance penalties
– Expensive multi-jet matrix elements
– Complicated phase space integration

• Example for non-obvious issues: matrix element clustering
– Aim at preservation of ME fixed order and PS

resummation properties
– Achieved by interpreting ME event in parton shower

language
⇒ Probabilistic backwards-clustering with parton

shower splitting kernels

= much more expensive than e.g. kT clustering

⇓
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⇓
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Cost breakdown – Preparation

Preparation costs = once per sample

Process construction (building “Feynman graphs”)
• not (yet) parallelisable
• identifies simplifications and mappings
• largest memory demands here,O(1GB) for complicated processes
• storage of information for production runs

Phase space integration of the matrix elements
• parallelisable with multithreading (up to factor∼ 5) or MPI (∼ perfect scaling)
 later

• storage of results for production runs

Example: W + 0,1,2j@NLO + 3,4,5j@LO
• 5h× 1CPU process construction
• 8h× 8CPU integration for W + 0,1,2j@NLO (including virtuals from OpenLoops)
• 48h× 8CPU integration for W + 3,4,5j@LO

(roughly factor of two lower if only up to 4 quarks)
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Cost breakdown – Initialisation

Initialisation costs = once per Grid job (core)

Process construction
• reads stored information from preparation phase
• CPU and I/O
• depends significantly on I/O speed with SHERPA < 2.1.0

• can take up to hours for more complicated processes

Example: W + 0,1,2j@NLO + 3,4,5j@LO
• 10min process initialisation
• ∼ constant 5min remaining initialisation
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Cost breakdown – Generation

Generation costs = once per event

Matrix element unweighting
• challenging matrix element calculations, e.g. table

Höche, Gleisberg (2008)

• really expensive: unweighting
efficiency for complicated processes as low as 0.001%
→ 105 ME calculations per event

• additionally merging with parton shower including ME
clustering

→ O(1 day)/1000 events in complicated cases

Process [ms/pt.]
gg → 2g 0.073
gg → 3g 0.339
gg → 4g 1.67
gg → 5g 8.98
gg → 6g 49.6
gg → 7g 298.
gg → 8g 1990.
gg → 9g 13100.
gg → 10g 96000.

Remaining generation chain
• remaining cost of event independent of ME+PS: < 0.5 s/evt
• includes hadronisation, decays, QED FSR, multiple parton interactions

Example: W + 0,1,2j@NLO + 3,4,5j@LO
• from ATLAS central production: ∼ 12h/2000 evts≈ 20 s/evt

→ needs work if detector simulation gets toO(1s)/evt
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ME integration with HPC

Multithreading in SHERPA

. . .

Amplitude Calculation

Main Program
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• same process manages multiple computing threads
• parallelisation of loop over process group and calculation of phase space weight
• uses shared memory for all threads
• saturates at∼ 5 cores⇒ not really useful for HPC
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ME integration with HPC

Message Passing Interface (MPI)
• separate process per core, communication through (fast!) network
• memory required per core, not shared
• in SHERPA used for parallelisation of loop over phase space points,

communication/optimisation of integrators every∼ 104...5 points iteration
• different MPI implementations supported (e.g. Cray, IBM, openmpi)

+5j + W→pp

MC integration

computation time

+5j + W→pp

MC integration
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Nearly perfect scaling with number of nodes
• “strong” scaling validation

fixed number of points per iteration

– up to 1024 nodes on Titan
• “weak” scaling validation

adapt number of points per iteration

– up to 8192 nodes on Titan
– up to 16000 nodes on Vesta

Höche, Reina, Wobisch, et al., 2013
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SHERPA on different HPC architectures

Höche, Reina, Wobisch, et al., 2013Cray XK7 “Titan” at OLCF
• 16 AMD OpteronTM 2.2 GHz cores per node (299,008 total cores), 32 GB RAM per node
• Cray Gemini 3D Torus Network
• Linux environment and Cray MPI implementation with Gnu compilers
• similar setup to Cray XE6 “Hopper” at NERSC

IBM BlueGene/Q test system “Vesta” at ALCF
• 16 1.6 GHz PowerPC A2 cores per node (32,768 total cores), 16 GB RAM per node
• IBM 5D Torus Network
• IBM-specific environment and MPI implementation with Gnu compilers

Intel Xeon Phi co-processor
• tested with 61× 4 compute cores at 1.238 GHz, 16 GB total memory
• offload mode for specific calculations⇒ needs dedicated programming model

(not implemented in SHERPA)
• alternatively: as many-core processor

– uses regular MPI-mode
– performance penalty of one core∼ factor of 16 compared to CPU
→ not really efficient according to these first tests
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I/O performance

I/O performance issues
• SHERPA relies on information in many small files:

– process construction/mapping information
– integration results
– decaydata for hadron decay channels
– multiple parton interaction grids

• Total number of (small) files read during initialisation is in the thousands

⇒ Performance penalty on slow file systems like in HPC or Grid sites

Improvements (Sherpa≥ 2.1.0)
• store all file contents in one database instead of many small files
• for practicality: use Sqlite database format
• still tuning performance (cache size, index creation, . . . )

⇒ I/O improvements as required by ATLAS(/CMS?) production and on HPC systems
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Conclusions

Summary
• event generation is trivially parallelisable
• performance improvements necessary if detector simulation gets toO(1s)/evt
• main emphasis of HPC usage in SHERPA: matrix element integration for multi-jet merging
• MPI used on many different architectures, nearly perfect scaling up to thousands of cores

Outlook
• SHERPA 2.1.0 to be released in the next weeks
• main improvement from HPC perspective: Sqlite database instead of many small files

• Question: status of MPI in experimental MC production and how to use SHERPA’s MPI
with it?

Thank you for your attention!

12/12


