

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Precision predictions for Higgs backgrounds

Frank Siegert

Freiburg, 6 May 2014

There is a Higgs!

The LHC Higgs physics program

- Higgs properties
 - Mass
 - Spin
 - CP
 - (Width?)
- Higgs couplings
 - Production mechanisms
 - Branching fractions
 - ightarrow measure as many couplings to vector bosons and fermions as possible
- Beyond the Standard Model
 - Can we find more than one Higgs boson?
 - What is the one we discovered?

Higgs physics will remain an active field for a while!

- Introduction
- Modern Monte-Carlo event generation
- **3** $pp \rightarrow t\bar{t}b\bar{b}$ background to $pp \rightarrow t\bar{t}H[\rightarrow b\bar{b}]$
- 4 $pp \rightarrow 4\ell$ +jets background to $pp \rightarrow H[\rightarrow WW]$
- 5 Conclusions

Monte-Carlo event generators in Higgs physics

- optimisation of analysis strategy before data is unblinded
- direct subtraction of backgrounds using simulation
- extrapolation from control to signal region in data-driven approaches
- · cheat easily by looking into the event record

Monte-Carlo event generators in Higgs physics

- optimisation of analysis strategy before data is unblinded
- direct subtraction of backgrounds using simulation
- extrapolation from control to signal region in data-driven approaches
- · cheat easily by looking into the event record

• MC event representation for full event

- Precision improvements in perturbative aspects:
 - Hard scattering at fixed order in perturbation theory

(Matrix Element)

 Approximate resummation of QCD corrections to all orders (Parton Shower)

and their combination!

 Gray bits: Hadronisation/Underlying event (ignored today)

- MC event representation for full event
- Precision improvements in perturbative aspects:
 - Hard scattering at fixed order in perturbation theory

(Matrix Element)

 Approximate resummation of QCD corrections to all orders (Parton Shower)

and their combination!

 Gray bits: Hadronisation/Underlying event (ignored today)

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj, ...)
- Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

 \Downarrow

Combination: ME+PS@NL0

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Basic idea

- "double-counting" between emission in real ME and parton shower
- ME is better than $\text{PS} \rightarrow \text{subtract PS}$ contribution first
- but: shower unitary \rightarrow add "integrated" PS contribution back for NLO accuracy

Reminder + notation: NLO subtraction

$$d\sigma^{(\text{NLO})} = d\Phi_B \left[\mathcal{B} + \tilde{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}^{(\text{S})}_{\{ij\}} \right] + d\Phi_R \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}^{(\text{S})}_{ij} \right]$$

NLO+PS formalism

• shower subtraction terms $\mathcal{D}^{(\mathrm{A})}_{ij}$

$$d\sigma^{(\text{NLO sub)}} = d\Phi_B \ \bar{\mathcal{B}}^{(\text{A})} + d\Phi_R \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})} \right]$$

with $\bar{\mathcal{B}}^{(\text{A})} = \mathcal{B} + \tilde{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}_{(ij)}^{(\text{S})} + \sum_{\{ij\}} \int dt \left[\mathcal{D}_{ij}^{(\text{A})} - \mathcal{D}_{ij}^{(\text{S})} \right]$

• apply PS resummation using $\mathcal{D}_{ij}^{(A)}$ as splitting kernels

Basic idea

- "double-counting" between emission in real ME and parton shower
- ME is better than $\text{PS} \rightarrow \text{subtract} \, \text{PS}$ contribution first
- but: shower unitary \rightarrow add "integrated" PS contribution back for NLO accuracy

Reminder + notation: NLO subtraction

$$d\sigma^{(\text{NLO})} = d\Phi_{\mathcal{B}} \left[\mathcal{B} + \tilde{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}^{(\text{S})}_{(ij)} \right] + d\Phi_{\mathcal{R}} \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}^{(\text{S})}_{ij} \right]$$

NLO+PS formalism

• shower subtraction terms
$$\mathcal{D}_{ij}^{(A)}$$

$$d\sigma^{(\text{NLO sub)}} = d\Phi_B \ \bar{\mathcal{B}}^{(A)} + d\Phi_R \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(A)} \right]$$
with $\bar{\mathcal{B}}^{(A)} = \mathcal{B} + \bar{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}_{(ij)}^{(S)} + \sum_{\{ij\}} \int dt \left[\mathcal{D}_{ij}^{(A)} - \mathcal{D}_{ij}^{(S)} \right]$

• apply PS resummation using $\mathcal{D}_{ij}^{(A)}$ as splitting kernels

Basic idea

- "double-counting" between emission in real ME and parton shower
- ME is better than $\text{PS} \rightarrow \text{subtract} \, \text{PS}$ contribution first
- but: shower unitary \rightarrow add "integrated" PS contribution back for NLO accuracy

Reminder + notation: NLO subtraction

$$d\sigma^{(\rm NLO)} \ = d\Phi_{\mathcal{B}} \left[\, \mathcal{B} + \tilde{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}^{(\rm S)}_{(ij)} \, \right] \ + \ d\Phi_{\mathcal{R}} \left[\, \mathcal{R} - \sum_{\{ij\}} \mathcal{D}^{(\rm S)}_{ij} \, \right]$$

NLO+PS formalism

• shower subtraction terms $\mathcal{D}_{ij}^{(A)}$

$$d\sigma^{(\text{NLO sub)}} = d\Phi_B \ \bar{\mathcal{B}}^{(\text{A})} + d\Phi_R \left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})} \right]$$

with $\bar{\mathcal{B}}^{(\text{A})} = \mathcal{B} + \tilde{\mathcal{V}} + \sum_{\{ij\}} \mathcal{I}_{(ij)}^{(\text{S})} + \sum_{\{ij\}} \int dt \left[\mathcal{D}_{ij}^{(\text{A})} - \mathcal{D}_{ij}^{(\text{S})} \right]$

• apply PS resummation using $\mathcal{D}_{ij}^{(A)}$ as splitting kernels

Master formula for NLO+PS up to first emission

$$d\sigma^{(\text{NLO+PS})} = d\Phi_B \, \bar{\mathcal{B}}^{(\text{A})} \left[\underbrace{\Delta^{(\text{A})}(t_0, \mu_Q^2)}_{\text{unresolved}} + \underbrace{\sum_{\{ij\}} \int_{t_0}^{\mu_Q^2} dt \, \frac{\mathcal{D}_{ij}^{(\text{A})}}{\mathcal{B}} \Delta^{(\text{A})}(t, \mu_Q^2)}_{\text{resolved, singular}} \right] \\ + d\Phi_R \left[\underbrace{\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})}}_{\text{resolved, non-singular} \equiv \mathcal{H}^{(\text{A})}} \right]$$

- To $\mathcal{O}(\alpha_s)$ this reproduces $\mathrm{d}\sigma^{(\mathrm{NLO})}$
- Event generation: $\bar{\mathcal{B}}^{(A)}$ or $\mathcal{H}^{(A)}$ seed event according to their XS
 - First line ("S-event"): from one-step PS with $\Delta^{(\mathrm{A})}$
 - \Rightarrow emission (resolved, singular) or no emission (unresolved) above t_0
 - Second line (" \mathbb{H} -event"): kept as-is ightarrow resolved, non-singular term
- Resolved cases: Subsequent emissions can be generated by ordinary PS
- Exact choice of $\mathcal{D}_{ii}^{(A)}$ will specify MC@NLO vs. POWHEG vs. S-MC@NLO ...

Master formula for NLO+PS up to first emission

$$d\sigma^{(\text{NLO}+\text{PS})} = d\Phi_B \,\bar{\mathcal{B}}^{(\text{A})} \left[\underbrace{\Delta^{(\text{A})}(t_0, \mu_Q^2)}_{\text{unresolved}} + \underbrace{\sum_{\{ij\}} \int_{t_0}^{\mu_Q^2} dt \, \frac{\mathcal{D}_{ij}^{(\text{A})}}{\mathcal{B}} \Delta^{(\text{A})}(t, \mu_Q^2)}_{\text{resolved, singular}} \right] \\ + d\Phi_R \underbrace{\left[\mathcal{R} - \sum_{\{ij\}} \mathcal{D}_{ij}^{(\text{A})} \right]}_{\text{resolved, non-singular} \equiv \mathcal{H}^{(\text{A})}}$$

- To $\mathcal{O}(\alpha_s)$ this reproduces $d\sigma^{(NLO)}$
- Event generation: $\bar{\mathcal{B}}^{(A)}$ or $\mathcal{H}^{(A)}$ seed event according to their XS
 - − First line ("S-event"): from one-step PS with $\Delta^{(A)}$ ⇒ emission (resolved, singular) or no emission (unresolved) above t_0
 - Second line (" \mathbb{H} -event"): kept as-is \rightarrow resolved, non-singular term
- Resolved cases: Subsequent emissions can be generated by ordinary PS
- Exact choice of $\mathcal{D}_{ii}^{(A)}$ will specify MC@NLO vs. POWHEG vs. S-MC@NLO ...

$pp \rightarrow t\bar{t}b\bar{b}$ as background to $pp \rightarrow t\bar{t}H[\rightarrow b\bar{b}]$

 $pp \rightarrow t\bar{t}H[\rightarrow b\bar{b}]$

Motivation

- direct investigation of Higgs couplings to fermions without detour of Higgs–gluon or Higgs–photon couplings
- background reduction compared to $pp \rightarrow H[\rightarrow b\bar{b}]$

LHC status

- ATLAS preliminary results ATLAS-CONF-2014-011
 - 20.3 fb⁻¹ data at $\sqrt{s} = 8$ TeV
 - single- and dilepton channel in top decays
 - signal strength relative to SM expectation: $\mu = 1.7 \pm 1.4$
- CMS preliminary results CMS-PAS-HIG-13-019
 - 19.5 fb⁻¹ data at $\sqrt{s} = 8$ TeV
 - includes also H
 ightarrow au au
 - single- and dilepton channel in top decays
 - signal strength relative to SM expectation: $\mu = 0.74^{+1.34}_{-1.30}$

Experimental challenges

- four *b*-quarks in the final state
 → difficult Higgs reconstruction due to combinatorics
- strong contamination from background contributions:
 - reducible: tījj or tīcc with misidentified jets
 - irreducible: $t\bar{t}b\bar{b}$ continuum

Theoretical challenges for background calculations

- - large QCD corrections/uncertainties
 - complicated higher-order calculations
- several mass scales

Fixed NLO QCD calculations

(with massless *b*-quarks)

- Bredenstein, Denner, Dittmaier, Pozzorini (2009); Id. (2010)
- Bevilacqua, Czakon, Papadopoulos, Pittau, Worek (2009)
- \Rightarrow large NLO/LO factor of $K \approx 1.8$

Massive & matched calculation

Cascioli, Maierhöfer, Moretti, Pozzorini, FS (2013)

- NLO QCD calculation using automated tools in common framework:
 - SHERPA Gleisberg, Höche, Krauss, Schönherr, Schumann, Winter, FS (2008) tree-level matrix elements, dipole subtraction, parton shower matching
 - OPENLOOPS virtual corrections
 - COLLIER tensor integral reduction
- full *b*-quark mass dependence in 4-flavour-scheme
- matching to SHERPA's parton shower

Denner, Dittmaier, Hofer (in prep.)

Cascioli, Maierhöfer, Pozzorini (2011)

Höche, Krauss, Schönherr, FS (2011)

~ unexpected new contribution "discovered"

Simulation setup

- LHC at 8 TeV
- top quarks treated as stable particles but LO decays could be included automatically with spin correlations
- 4-flavour-scheme with finite *b*-mass and corresponding MSTW2008 PDFs + α_s
- renormalisation scale

$$\mu_R^4 \sim \prod_{i=t,\bar{t},b,\bar{b}} E_{\mathrm{T},i}$$

• factorisation and resummation scale

$$\mu_F \sim \mu_Q \sim \frac{1}{2} (E_{\mathrm{T},t} + E_{\mathrm{T},\bar{t}})$$

Analysis

- jet reconstruction using anti- k_t algorithm with R = 0.4
- "(idealised) experimental" *b*-tagging: *b*-jet = jet with at least one *b*-quark constituent \rightarrow allows for quasi-collinear *bb*-pairs
- require ≥ 2 *b*-jets with $p_{\perp} > 25$ GeV and $|\eta| < 2.5$
- Higgs signal region selection: m_{bb} > 100 GeV

Total cross sections

	ttb	ttbb	$ttbb(m_{bb} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{ m NLO}[m fb]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{ ext{S-MC@NLO}}[ext{fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181.0^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ ext{S-MC@NLO}}/\sigma_{ ext{NLO}}$	1.01	1.07	1.28
$\sigma^{2b}_{S-MC@NLO}[fb]$	3299	552	146
$\sigma^{\rm 2b}_{ m S-MC@NLO}/\sigma_{ m NLO}$	1.00	0.99	1.03

- uncertainty estimates from μ_R and $\mu_F \oplus \mu_Q$ variations
- large enhancement of S-MC@NLO prediction in $m_{bb} > 100 \text{ GeV}$ region!

A closer look at high m_{bb}

- clear enhancement of S-MC@NLO prediction at high m_{bb}
- caused by double quasi-collinear $g \rightarrow b\bar{b}$ splitting

(technical test: absent if $g \rightarrow b\bar{b}$ switched off in PS \rightsquigarrow black line)

- contribution very relevant for Higgs search region $m_{bb} > 100 \text{ GeV}$ exceeds Higgs signal :(
- can only be simulated precisely due to massive and PS matched calculation!

 topology of enhancement: back-to-back *b*-jets with smallest *p*⊥ to reach *m*_{bb} > 100 GeV
 ⇒ completely consistent with expectation from double splitting picture

$pp \rightarrow \ell\ell\nu\nu$ + jets as background for $pp \rightarrow H[\rightarrow WW]$

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
 - avoid double counting in real emission
 - preserve inclusive NLO accuracy

ME+PS@L0 merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj, ...)
- Objectives:
 - combine into one inclusive sample by making them exclusive
 - preserve resummation accuracy

 \Downarrow

Combination: ME+PS@NL0

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wjj, ...
- Objectives:
 - combine into one inclusive sample
 - preserve NLO accuracy for jet observables

Precise predictions for $pp \rightarrow \ell\ell\nu\nu$ + jets

- As signal: SM measurements, vector-boson scattering, anomalous couplings, ...
- As background: Higgs production, BSM searches

Background to $H \to WW^* \to \ell^+ \nu \ell^- \bar{\nu}$ + jets

Higgs analyses in exclusive 0, 1, 2-jet bins (\Rightarrow jet vetoes)

- \rightarrow Better control over backgrounds (WW^{*} vs. $t\bar{t}$)
- \rightarrow Disentangle production modes (gg \rightarrow H vs. VBF)

Non-trivial theoretical issues

- Precise predictions for jet production \Rightarrow beyond inclusive NLO QCD
- Exclusive jet bins ⇒ Sudakov effects, resummation
- Offshell WW^{*} production ⇒ non-resonant and interference effects
- Loop-induced processes like gg → WW* sizeable in Higgs signal regions

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, FS; arXiv: 1309.0500

Toolkit

- SHERPA including its automated dipole subtraction and merging a la MEPS@NLO
- OPENLOOPS automated 1-loop QCD matrix elements Cascioli, Maierhöfer, Pozzorini; arXiv:111.5206
 including the COLLIER tensor integral reduction
 Denner, Dittmaier, Hofer; in prep.

Phenomenological setup: $pp \rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu$ + jets

- Predictions for LHC $\sqrt{s} = 8$ TeV, using CT10 PDFs
- QCD NLO accuracy for $\ell\ell\nu\nu + 0, 1$ jets
- Squared quark-loop contributions merged for +0,1 jets
- · Full off-shell, interference and spin-correlation effects
- NLO+PS matching to the parton shower, MEPS@NLO merging into inclusive sample
- Central scale choice: $\mu_0 = \frac{1}{2}(E_{T,W^+} + E_{T,W^-})$
- CKKW-like scale prescription in merged jet emissions: α_s(k_⊥)
- Independent factor-2 variations of $\mu_{F,R}$ and factor- $\sqrt{2}$ of resummation scale μ_Q

Comparison of different simulation levels

NLO simulations	0-jet	1-jet	2-jet
NLO 4ℓ	NLO	LO	-
NLO $4\ell + 1j$	-	NLO	LO
S-Mc@NLO 4ℓ	NLO+PS	LO+PS	PS
S-Mc@NLO $4\ell + 1j$	-	NLO+PS	LO+PS
$MEPS@NLO\ 4\ell+0,1j$	NLO+PS	NLO+PS	LO+PS
LOOP ² simulations	0-jet	1-jet	2-jet
$LOOP^2 4\ell$	LO	-	-
$LOOP^2 4\ell + 1j$	-	LO	-
LOOP ² +PS 4ℓ	LO+PS	PS	PS
$LOOP^2 + PS 4\ell + 1j$	-	LO+PS	PS
$Meps@Loop^2 4\ell + 0, 1j$	LO+PS	LO+PS	PS

- NLO 4 ℓ and S-MC@NLO 4 ℓ only LO accurate, underestimate hard p_{\perp} tail
- Resummation necessary for $p_{\perp} \rightarrow 0$ (Sudakov logs)
 - NLO $4\ell \sim 20\%$ effects at $p_{\perp} = 5 \text{ GeV}$
 - NLO $4\ell + 1j$ partially includes logs \Rightarrow reduced effect
- Harder tails in fixed-order due to μ_R not dynamic with jet p_⊥
- H_T sensitive to combination of different jet multiplicities ⇒ merging crucial

Exclusive 0-jet bin

- Few-% agreement between S-MC@NLO and ME+PS@NLO
- Moderate Sudakov effects in comparison of NLO 4ℓ and S-MC@NLO 4ℓ
- Low uncertainties → good control wrt higher orders/logs

Inclusive 1-jet bin

- Sizable differences between S-MC@NLO and ME+PS@NLO, similar to jet p⊥
- NLO $4\ell + 1j$ excess in tail due to α_s scale differences again

0-jet production: Examples for $gg ightarrow 4\ell$ diagrams

- finite subset of NNLO contributions: squared quark loops like $gg \rightarrow 4\ell$
- relevant at LHC due to gluonic initial states, particularly in Higgs signal regions

1-jet production

• example diagrams (requirement: vector bosons coupling to pure quark loop)

- first merging of 0-jet and 1-jet squared-loop contributions
- tree-level merging techniques since all MEs are finite
- shower on top of $gg \rightarrow 4\ell \Rightarrow$ consistency requires MEs for qg, $\bar{q}g$ and $q\bar{q}$ initial states

Impact of LOOP² contributions

- Inclusive contribution of a few %
- Shape distortions: more significant impact in Higgs signal region (e.g. low m_{ℓℓ})

Features of LOOP² contributions

Merging effects

- Inclusion of LOOP² $4\ell + 1j$ in merging: harder p_{\perp} spectrum
- Significant reduction of uncertainties (wrt resummation scale) in high- p_{\perp} region

Non-gluonic initial states

- Inclusion of quark-channels \rightarrow harder tail
- Naturally, lower Sudakov suppression without quark splittings
- Shape distortion
 ⇒ opposite effects in 0/1 jet bins

Rivet implementation of Higgs analyses

- 8 separate analyses: {ATLAS,CMS} \times {0-jet, 1-jet} \times {signal region, control region}
- Differential predictions in relevant observables: pⁱ_⊥, m_{ℓℓ}, Δφ_{ℓℓ}, m_T

Findings

- Different simulation levels agree well in 0-jet bin (where they are NLO accurate)
- Fixed-order agrees with matched/merged predictions in most regions \rightarrow Sudakov logs not dominant, except e.g. $\Delta \phi_{\ell\ell} \rightarrow \pi$
- Pure S-Mc@NLO predictions underestimates rate in 1-jet bins
- Uncertainty bands for best prediction (ME+PS@NLO) from $\mu_{R,F}\oplus\mu_Q$ variations at the few-% level

Example from ATLAS analysis

Example from CMS analysis

Signal/control cross sections in exclusive jet bins

- Relevant for background extrapolation from control to signal region in data-driven methods
- Example: ATLAS analysis

0-jet bin	NLO 4ℓ $(+1j)$	S-Mc@NL0 4ℓ	$Meps@Nlo4\ell+0,1j$	$Meps@Loop^2 \ 4\ell + 0, 1j$
$\sigma_{\rm S}$ [fb]	$34.28(9) \stackrel{+2.1\%}{_{-1.6\%}}$	$32.52(8) \begin{array}{c} +2.1\% \\ -0.8\% \\ -0.7\% \end{array} + 1.2\%$	$33.81(12) \begin{array}{c} +1.4\% & +2.0\% \\ -2.2\% & -0.4\% \end{array}$	$1.98(2) \begin{array}{c} +23\% & +27\% \\ -16.5\% & -20\% \end{array}$
$\sigma_{\rm C}$ [fb]	$55.76(9) \stackrel{+2.0\%}{_{-1.7\%}}$	$52.28(9) \begin{array}{c} +1.4\% \\ -0.7\% \\ -1.1\% \end{array}$	$54.18(15) \begin{array}{c} +1.4\% \\ -1.9\% \\ -0.4\% \end{array} + 2.5\%$	$2.41(2) \begin{array}{c} +22\% \\ -17\% \\ -18\% \end{array} +27\%$
1-jet bin	NLO 4ℓ $(+1j)$	S-Mc@NL0 4ℓ	$Meps@Nlo4\ell+0,1j$	$Meps@Loop^2 4\ell + 0, 1j$
1-jet bin $\sigma_{\rm S}$ [fb]	NLO 4ℓ (+1j) 8.99(4) ^{+4.9%} _{-9.5%}	S-Mc@NL0 4 <i>ℓ</i> 8.02(4) +8.5% +0% -6.4% -3.1%	$\frac{\text{Meps@Nlo 4}\ell + 0, 1j}{9.37(9) \begin{array}{c} +2.6\% \\ -2.7\% \end{array}}$	$\frac{Meps @ Loop^2 \ 4\ell + 0, 1j}{0.46(1) \ \overset{+40\%}{_{-18\%}} \ \overset{+2.2\%}{_{-6.3\%}}}$

- Merged sample reproduces individual NLO cross sections well
- Combined uncertainty on ME+PS@NLO best prediction around 3(5)% in 0(1)-jet bin
- LOOP² effects larger in Signal than in Control region

Summary

- Higgs measurements depend on precise Monte-Carlo predictions, e.g. for background modelling
- Main background to pp → tt
 H[→ bb] under control by NLO+PS matched pp → tt
 bb
 calculation with massive b-quarks
- Surprising: large contribution from double collinear configurations in Higgs analyses
- $pp \rightarrow 4\ell$ continuum background to $pp \rightarrow H[\rightarrow WW]$ calculated with ME+PS@NLO
- Uncertainties reduced to few-% level simultaneously in $4\ell + 0j$ and $4\ell + 1j$ bin
- Finite loop² contributions taken into account in merged approach for $4\ell + 0, 1j$

Outlook for Higgs backgrounds

- Consistent combination of $t\bar{t}H[\rightarrow b\bar{b}]$ backgrounds
 - S-MC@NLO prediction for ttbb
 - ME+PS@NLO prediction for $t\bar{t} + 0, 1, 2j$ Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, FS (2014)
- Extension to 4ℓ + 0, 1, 2j for high precision in VBF search region
 → complement with NLO+PS matched pp → WWbb for top contributions