QCD Parton Shower Simulations: How to raise their predictive power

Graduate School Seminar
"Particle and Astro-Particle Physics in the Light of the LHC"

Frank Siegert

RWTH Aachen, May 2014

- We want:

Simulation of $p p \rightarrow$ full hadronised final state

- MC event representation (e.g. $p p \rightarrow \bar{t} \bar{t} H$ event)
- We know from first principles:
- Hard scattering at fixed order in perturbation theory (Matrix Element)
- Approximate
resummation of QCD corrections to all orders (Parton Shower)

- We want:

Simulation of $p p \rightarrow$ full hadronised final state

- MC event representation (e.g. $p p \rightarrow t \bar{t} H$ event)
- We know from first principles:
- Hard scattering at fixed
order in perturbation
theory
(Matrix Element)
- Approximate
resummation of QCD
corrections to all orders
(Parton Shower)

- We want: Simulation of $p p \rightarrow$ full hadronised final state
- MC event representation (e.g. $p p \rightarrow t \bar{t} H$ event)
- We know from first principles:
- Hard scattering at fixed order in perturbation theory (Matrix Element)
- Approximate resummation of QCD corrections to all orders (Parton Shower)
- Missing bits:

Hadronisation/Underlying event (ignored here)

Introduction: Monte-Carlo event generators

Outline

- Reminder: QCD perturbation theory
- The parton shower approximation
- Correcting that approximation as far as possible:
- NLO+PS matching (2002)
- Tree-level ME+PS merging ${ }^{22001)}$
- ME+PS merging at NLO ${ }^{(2012)}$
- We want:

Simulation of $p p \rightarrow$ full

hadronised final state

- MC event representation (e.g. pp $\rightarrow t \bar{t} H$ event)
- We know from first principles:
- Hard scattering at fixed order in perturbation theory (Matrix Element)
- Approximate resummation of QCD corrections to all orders (Parton Shower)
- Cannot solve QCD and calculate e.g. $p p \rightarrow t \bar{t} H$ exactly
- But can calculate parts of the perturbative series in α_{s} :

- Most precise calculations include $\mathcal{O}\left(\alpha_{s}^{2}\right)$ for some processes
- $\alpha_{\mathrm{s}}^{2} \approx 1 \% \Rightarrow$ high enough precision, right?
- Why is that not always true?
- Predictions for inclusive observables calculable at fixed-order (\rightsquigarrow KLN theorem for cancellation of infrared divergences)
- But if not inclusive \rightarrow finite remainders of infrared divergences:

$$
\text { logarithms of } \frac{\mu_{\text {hard }}^{2}}{\mu_{\text {cut }}^{2}} \text { with each } \mathcal{O}\left(\alpha_{s}\right)
$$

can become large and spoil convergence of perturbative series
Examples:

- Study certain regions of phase space, like $p_{\perp}^{Z} \approx 0 @$ DY
- Making predictions for hadron-level final states: confinement at $\mu_{\text {had }} \approx 1 \mathrm{GeV}$
\Rightarrow Need to resum the series to all orders
- Problem: We are not smart enough for that.
- Workaround: Resum only the logarithmically enhanced terms in the series
\rightarrow Parton Showers!

Universal structure at all orders

- Factorisation of OCD real emission for collinear partons (i, j) :

$$
\mathcal{R} \rightarrow \mathcal{D}_{i j}^{(\mathrm{PS})} \equiv \mathcal{B} \times\left[8 \pi \alpha_{s} \frac{1}{2 p_{i} p_{j}} \mathcal{K}_{i j}\left(p_{i}, p_{j}\right)\right]
$$

Universal structure at all orders

- Factorisation of OCD real emission for collinear partons (i, j) :

$$
\mathcal{R} \rightarrow \mathcal{D}_{i j}^{(\mathrm{PS})} \equiv \mathcal{B} \times\left[8 \pi \alpha_{s} \frac{1}{2 p_{i} p_{j}} \mathcal{K}_{i j}\left(p_{i}, p_{j}\right)\right]
$$

- $\mathcal{R}=$ real emission matrix element
- $\mathcal{B}=$ Born matrix element
- Massless propagator $\frac{1}{2 p_{i} p_{j}}$

Later: Evolution variable of shower $t \sim 2 p_{i} p_{j}$, e.g. k_{\perp}, angle, \ldots

- $\mathcal{K}_{i j}$ splitting kernel for branching $(i j) \rightarrow i+j$

Specific form depends on factorisation scheme (DGLAP, Catani-Seymour, Antenna, ...)

Universal structure at all orders

- Factorisation of OCD real emission for collinear partons (i, j) :

$$
\mathcal{R} \rightarrow \mathcal{D}_{i j}^{(\mathrm{PS})} \equiv \mathcal{B} \times\left[8 \pi \alpha_{s} \frac{1}{2 p_{i} p_{j}} \mathcal{K}_{i j}\left(p_{i}, p_{j}\right)\right]
$$

- $\mathcal{R}=$ real emission matrix element
- $\mathcal{B}=$ Born matrix element
- Massless propagator $\frac{1}{2 p_{i} p_{j}}$

Later: Evolution variable of shower $t \sim 2 p_{i} p_{j}$, e.g. k_{\perp}, angle, \ldots

- $\mathcal{K}_{i j}$ splitting kernel for branching $(i j) \rightarrow i+j$

Specific form depends on factorisation scheme (DGLAP, Catani-Seymour, Antenna, ...)

- Factorisation of phase space element

$$
\mathrm{d} \Phi_{\mathcal{R}} \rightarrow \mathrm{d} \Phi_{\mathcal{B}} \mathrm{d} \Phi_{1}=\mathrm{d} \Phi_{\mathcal{B}} \mathrm{d} t \frac{1}{16 \pi^{2}} \mathrm{~d} z \frac{\mathrm{~d} \phi}{2 \pi}
$$

\Rightarrow Combination gives differential branching probability

$$
\mathrm{d} \sigma_{i j}^{(\mathrm{PS})} \sim \mathrm{d} t \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}} \sim \frac{\mathrm{d} t}{t} \frac{\alpha_{s}}{2 \pi} \mathcal{K}_{i j}
$$

Resummation of multiple emissions

- $\mathrm{d} \sigma_{i j}^{(\mathrm{PS})}$ is universal and appears for each emission
- How do we get the resummed branching probability according to multiple such emissions?

$$
\rightarrow \text { Analogy to evolution of ensemble of radioactive nuclei: }
$$

Survival probability at time t_{1} depends on decay/survival at times $t<t_{1}$

Radioactive decay

- Constant differential decay probability

$$
f(t)=\text { const } \equiv \lambda
$$

- Survival probability $\mathcal{N}(t)$

$$
\begin{aligned}
-\frac{\mathrm{d} \mathcal{N}}{\mathrm{~d} t} & =\lambda \mathcal{N}(t) \\
\Rightarrow \mathcal{N}(t) & \sim \exp (-\lambda t)
\end{aligned}
$$

Parton shower branching

- Differential branching probability

$$
f(t) \equiv \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}
$$

- Survival probability $\mathcal{N}(t)$

$$
\begin{gathered}
-\frac{\mathrm{d} \mathcal{N}}{\mathrm{~d} t}=f(t) \mathcal{N}(t) \\
\Rightarrow \mathcal{N}(t) \sim \exp \left(-\int_{0}^{t} \mathrm{~d} t^{\prime} f\left(t^{\prime}\right)\right)
\end{gathered}
$$

Algorithmic PS implementation

Radioactive decay

- Survival probability $\mathcal{N}(t)$
$\mathcal{N}(t) \sim \exp (-\lambda t)$
- Resummed decay probability $\mathcal{P}(t)$

$$
\mathcal{P}(t)=f(t) \mathcal{N}(t) \sim \lambda \exp (-\lambda t)
$$

Parton shower branching

- Survival probability $\mathcal{N}(t)$

$$
\mathcal{N}(t) \sim \exp \left(-\int_{0}^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)
$$

- Resummed branching probability $\mathcal{P}(t)$

$$
\mathcal{P}(t)=f(t) \mathcal{N}(t) \sim f(t) \exp \left(-\int_{0}^{t} \mathrm{~d} t^{\prime} f\left(t^{\prime}\right)\right)
$$

Parton shower recursion

- Generate next branching "time" t with probability

$$
\mathcal{P}\left(t, t_{\text {previous }}\right)=f(t) \exp \left(-\int_{t_{\text {previous }}}^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)
$$

- Analytically:

$$
t=F^{-1}\left[F\left(t_{\text {previous }}\right)+\log \left(\#_{\text {random }}\right)\right] \text { with } F(t)=\int_{t_{0}}^{t} \mathrm{~d} t^{\prime} f\left(t^{\prime}\right)
$$

- If integral/its inverse are not known: "Veto algorithm" = extension of hit-or-miss
- Overestimate $g(t) \geq f(t)$ with known integral $G(t)$ $\rightarrow t=G^{-1}\left[G\left(t_{\text {previous }}\right)+\log \left(\#_{\text {random }}\right)\right]$
- Accept t with probability $\frac{f(t)}{g(t)}$ using hit-or-miss

Summary of main parton shower ingredients

- "Sudakov form factor" \equiv Survival probability of parton ensemble:

$$
\mathcal{N}(t) \sim \exp \left(-\int_{0}^{t} \mathrm{~d} t^{\prime} f\left(t^{\prime}\right)\right) \quad \rightarrow \quad \Delta\left(t^{\prime}, t^{\prime \prime}\right)=\prod_{\{i j\}} \exp \left(-\int_{t^{\prime}}^{t^{\prime \prime}} \mathrm{d} t \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}\right)
$$

- Evolution variable t : not time, but scale of collinearity from hard to soft $t \sim 2 p_{i} p_{j} \sim$ e.g. angle θ, virtuality Q^{2}, relative transverse momentum k_{\perp}^{2}, \ldots
- Starting scale μ_{Q}^{2} (time $t=0$ in radioactive decay) defined by hard scattering
- Cutoff scale related to hadronisation scale $t_{0} \sim \mu_{\text {had }}^{2}$
- Other variables (z, ϕ) generated directly according to $\mathrm{d} \sigma_{i j}^{(\mathrm{PS})}(t, z, \phi)$

Summary of main parton shower ingredients

- "Sudakov form factor" \equiv Survival probability of parton ensemble:

$$
\mathcal{N}(t) \sim \exp \left(-\int_{0}^{t} \mathrm{~d} t^{\prime} f\left(t^{\prime}\right)\right) \quad \rightarrow \quad \Delta\left(t^{\prime}, t^{\prime \prime}\right)=\prod_{\{i j\}} \exp \left(-\int_{t^{\prime}}^{t^{\prime \prime}} \mathrm{d} t \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}\right)
$$

- Evolution variable t : not time, but scale of collinearity from hard to soft
$t \sim 2 p_{i} p_{j} \sim$ e.g. angle θ, virtuality Q^{2}, relative transverse momentum k_{\perp}^{2}, \ldots
- Starting scale μ_{Q}^{2} (time $t=0$ in radioactive decay) defined by hard scattering
- Cutoff scale related to hadronisation scale $t_{0} \sim \mu_{\text {had }}^{2}$
- Other variables (z, ϕ) generated directly according to $\mathrm{d} \sigma_{i j}^{(\mathrm{PS})}(t, z, \phi)$

\Rightarrow Differential cross section (up to first emission)

$$
\mathrm{d} \sigma^{(\mathrm{B})}=\mathrm{d} \Phi_{B} \mathcal{B}
$$

Summary of main parton shower ingredients

- "Sudakov form factor" \equiv Survival probability of parton ensemble:

$$
\mathcal{N}(t) \sim \exp \left(-\int_{0}^{t} \mathrm{~d} t^{\prime} f\left(t^{\prime}\right)\right) \quad \rightarrow \quad \Delta\left(t^{\prime}, t^{\prime \prime}\right)=\prod_{\{i j\}} \exp \left(-\int_{t^{\prime}}^{t^{\prime \prime}} \mathrm{d} t \frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}}\right)
$$

- Evolution variable t : not time, but scale of collinearity from hard to soft
$t \sim 2 p_{i} p_{j} \sim$ e.g. angle θ, virtuality Q^{2}, relative transverse momentum k_{\perp}^{2}, \ldots
- Starting scale μ_{Q}^{2} (time $t=0$ in radioactive decay) defined by hard scattering
- Cutoff scale related to hadronisation scale $t_{0} \sim \mu_{\text {had }}^{2}$
- Other variables (z, ϕ) generated directly according to $\mathrm{d} \sigma_{i j}^{(\mathrm{PS})}(t, z, \phi)$

\Rightarrow Differential cross section (up to first emission)

$$
\mathrm{d} \sigma^{(\mathrm{PS})}=\mathrm{d} \Phi_{B} \mathcal{B}[\underbrace{\Delta^{(\mathrm{PS})}\left(t_{0}, \mu_{Q}^{2}\right)}_{\text {unresolved }}+\underbrace{\sum_{\{i j\}} \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{~d} t \frac{\mathrm{~d} \sigma_{i j}^{(\mathrm{PS})}}{\mathrm{d} t} \Delta^{(\mathrm{PS})}\left(t, \mu_{Q}^{2}\right)}_{\text {resolved }}]
$$

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSRLO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. $W, W j, W j j, \ldots$)
- Objectives:
- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy

Combination: ME+PSRNLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. $W, W j, W j j, \ldots$
- Objectives:
- combine into one inclusive sample
- preserve NLO accuracy for jet observables

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSRLO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj, ...)
- Objectives:
- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy
- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. $W, W j, W j j, \ldots$
- Objectives:
- combine into one inclusive sample
- preserve NLO accuracy for jet observables

NLO+PS matching in a nutshell

Basic idea

- "double-counting" between emission in real ME and parton shower
- ME is better than PS \rightarrow subtract PS contribution first
- but: shower unitary \rightarrow re-add "integrated" PS contribution with Born kinematics

NLO+PS matching in a nutshell

Basic idea

- "double-counting" between emission in real ME and parton shower
- ME is better than PS \rightarrow subtract PS contribution first
- but: shower unitary \rightarrow re-add "integrated" PS contribution with Born kinematics

Subtlety: NLO already contains subtraction

$$
\mathrm{d} \sigma^{(\mathrm{NLO})}=\mathrm{d} \Phi_{B}\left[\mathcal{B}+\tilde{\mathcal{V}}+\sum_{\{i j\}} \mathcal{I}_{(i j)}^{(\mathrm{S})}\right]+\mathrm{d} \Phi_{R}\left[\mathcal{R}-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{S})}\right]
$$

Basic idea

- "double-counting" between emission in real ME and parton shower
- ME is better than PS \rightarrow subtract PS contribution first
- but: shower unitary \rightarrow re-add "integrated" PS contribution with Born kinematics

Subtlety: NLO already contains subtraction

$$
\mathrm{d} \sigma^{(\mathrm{NLO})}=\mathrm{d} \Phi_{B}\left[\mathcal{B}+\tilde{\mathcal{V}}+\sum_{\{i j\}} \mathcal{I}_{(i j)}^{(\mathrm{S})}\right]+\mathrm{d} \Phi_{R}\left[\mathcal{R}-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{S})}\right]
$$

Additional subtraction

- introduce additional (shower) subtraction terms $\mathcal{D}_{i j}^{(\mathrm{A})}$

$$
\begin{aligned}
\mathrm{d} \sigma^{(\mathrm{NLO} \text { sub })} & =\mathrm{d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}+\mathrm{d} \Phi_{R}\left[\mathcal{R}-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\right] \\
\text { with } \overline{\mathcal{B}}^{(\mathrm{A})} & =\mathcal{B}+\tilde{\mathcal{V}}+\sum_{\{i j\}} \mathcal{I}_{(i j)}^{(\mathrm{S})}+\sum_{\{i j\}} \int \mathrm{d} t\left[\mathcal{D}_{i j}^{(\mathrm{A})}-\mathcal{D}_{i j}^{(\mathrm{S})}\right]
\end{aligned}
$$

- now apply PS resummation using $\mathcal{D}_{i j}^{(\mathrm{A})}$ as splitting kernels

Master formula for NLO+PS up to first emission

$$
\begin{aligned}
\mathrm{d} \sigma^{(\mathrm{NLO}+\mathrm{PS})}= & \mathrm{d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}[\underbrace{\Delta^{(\mathrm{A})}\left(t_{0}, \mu_{Q}^{2}\right)}_{\text {unresolved }}+\underbrace{\sum_{\{i j\}} \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{~d} t \frac{\mathcal{D}_{i j}^{(\mathrm{A})}}{\mathcal{B}} \Delta^{(\mathrm{A})}\left(t, \mu_{Q}^{2}\right)}_{\text {resolved, singular }}] \\
& +\mathrm{d} \Phi_{R} \underbrace{\left[\mathcal{R}-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\right]}_{\text {resolved, non-singular } \equiv \mathcal{H}(\mathrm{A})}
\end{aligned}
$$

Master formula for NLO+PS up to first emission

$$
\begin{aligned}
\mathrm{d} \sigma^{(\mathrm{NLO}+\mathrm{PS})}= & \mathrm{d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}[\underbrace{\Delta^{(\mathrm{A})}\left(t_{0}, \mu_{Q}^{2}\right)}_{\text {unresolved }}+\underbrace{\sum_{\{i j\}} \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{~d} t \frac{\mathcal{D}_{i j}^{(\mathrm{A})}}{\mathcal{B}} \Delta^{(\mathrm{A})}\left(t, \mu_{Q}^{2}\right)}_{\text {resolved, singular }}] \\
& +\mathrm{d} \Phi_{R} \underbrace{\left[\mathcal{R}-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\right]}_{\text {resolved, non-singular } \equiv \mathcal{H}(\mathrm{A})}
\end{aligned}
$$

- To $\mathcal{O}\left(\alpha_{s}\right)$ this reproduces $\mathrm{d} \sigma^{(\mathrm{NLO})}$
- Exact choice of $\mathcal{D}_{i j}^{(\mathrm{A})}$ distinguishes Mc@ NLO vs. Powheg vs. S-Mc@ NLO vs. ...

Master formula for NLO+PS up to first emission

$$
\begin{aligned}
\mathrm{d} \sigma^{(\mathrm{NLO}+\mathrm{PS})}= & \mathrm{d} \Phi_{B} \overline{\mathcal{B}}^{(\mathrm{A})}[\underbrace{\Delta^{(\mathrm{A})}\left(t_{0}, \mu_{Q}^{2}\right)}_{\text {unresolved }}+\underbrace{\sum_{\{i j\}} \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{~d} t \frac{\mathcal{D}_{i j}^{(\mathrm{A})}}{\mathcal{B}} \Delta^{(\mathrm{A})}\left(t, \mu_{Q}^{2}\right)}_{\text {resolved, singular }}] \\
& +\mathrm{d} \Phi_{R} \underbrace{\left[\mathcal{R}-\sum_{\{i j\}} \mathcal{D}_{i j}^{(\mathrm{A})}\right]}_{\text {resolved, non-singular } \equiv \mathcal{H}(\mathrm{A})}
\end{aligned}
$$

- To $\mathcal{O}\left(\alpha_{s}\right)$ this reproduces $\mathrm{d} \sigma^{(\mathrm{NLO})}$
- Exact choice of $\mathcal{D}_{i j}^{(\mathrm{A})}$ distinguishes Mc@NLO vs. Powheg vs. S-Mc@NLO vs. ...
- Event generation: $\overline{\mathcal{B}}^{(\mathrm{A})}$ or $\mathcal{H}^{(\mathrm{A})}$ seed event according to their XS
- First line ("S-event"): from one-step PS with $\Delta^{(\mathrm{A})}$
\Rightarrow emission (resolved, singular) or no emission (unresolved) above t_{0}
- Second line ("H-event"): kept as-is \rightarrow resolved, non-singular term
- Resolved cases: Subsequent emissions can be generated by ordinary PS

Mc®NLo

Frixione, Webber (2002)

S-McaNLo

Höche, Krauss, Schönherr, FS (2011)
$\mathcal{D}^{(\mathrm{A})}=\mathcal{D}^{(\mathrm{PS})}=\mathbf{P S}$ splitting kernels

+ Shower algorithm for Born-like events easy to implement
- "Non-singular" piece $\mathcal{R}-\sum_{i j} \mathcal{D}_{i j}^{(\mathrm{A})}$ is actually singular:
- Collinear divergences subtracted by splitting kernels
- Remaining soft divergences as they appear in non-trivial processes at sub-leading $N_{c} \quad X$
$\mathcal{D}^{(\mathrm{A})}=\mathcal{D}^{(\mathrm{S})}=$ Subtraction terms
+ "Non-singular" piece fully free of divergences
- Splitting kernels in shower algorithm become negative

Solution: Weighted $N_{C}=3$ one-step PS based on subtraction terms

Used in SHERPA

Workaround: \mathcal{G}-function dampens soft limit in non-singular piece
\Leftrightarrow Loss of formal NLO accuracy
(but heuristically only small impact)

Original Powheg

- Choose additional subtraction terms as

$$
\mathcal{D}_{i j}^{(\mathrm{A})} \rightarrow \rho_{i j} \mathcal{R} \quad \text { where } \quad \rho_{i j}=\frac{\mathcal{D}_{i j}^{(\mathrm{S})}}{\sum_{m n} \mathcal{D}_{m n}^{(\mathrm{S})}}
$$

- \mathcal{H}-term vanishes \Rightarrow No negative weighted events
- Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme

- Subtract arbitrary regular piece from \mathcal{R} and generate separately as \mathbb{H}-events

$$
\mathcal{D}_{i j}^{(\mathrm{A})}\left(\Phi_{R}\right) \rightarrow \rho_{i j}\left(\Phi_{R}\right)\left[\mathcal{R}\left(\Phi_{R}\right)-\mathcal{R}^{r}\left(\Phi_{R}\right)\right] \quad \text { where } \quad \rho_{i j} \text { as above }
$$

- Tuning of \mathcal{R}^{r} to reduce exponentiation of arbitrary terms
- Allows to generate the non-singular cases of \mathcal{R} without underlying \mathcal{B}

Inherent systematic uncertainties

Perturbative uncertainties

- Unknown higher-order corrections
- Estimated by scale variations $\mu_{F}=\mu_{R}=\frac{1}{2} \mu \ldots 2 \mu$

Non-perturbative uncertainties

- Model uncertainties in hadronisation, hadron decays, multiple parton interactions
- Estimated by variation of parameters/models within tuned ranges

Resummation uncertainties

- Arbitrariness of $\mathcal{D}^{(\mathrm{A})}$ and thus of the exponent in $\Delta^{(\mathrm{A})}$
- Estimated by:
- Variations of μ_{Q}^{2} in Mc@NLo
- (Variation of \mathcal{R}^{r} in Powheg)
- Reduced by merging with NLO for higher parton multiplicities \rightsquigarrow later

Example: pp $\rightarrow \mathbf{h}+$ jets

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSRLO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj, ...)
- Objectives:
- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy

Combination: ME+PSRNLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wifj, ...
- Objectives:
- combine into one inclusive sample
- preserve NLO accuracy for jet observables

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSRLO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. $W, W j, W j j, \ldots$)
- Objectives:
- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy

Combination: ME+PSRNLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wijf, ...
- Objectives:
- combine into one inclusive sample
- preserve NLO accuracy for jet observables

Main idea

Phase space slicing for QCD radiation in shower evolution

- Hard emissions $Q_{i j}(z, t)>Q_{\text {cut }}$
- Events rejected \rightsquigarrow Sudakov suppression
- Compensated by events starting from higher-order ME regularised by $Q_{\text {cut }}$
\Rightarrow Splitting kernels replaced by exact real-emission matrix elements

$$
\mathcal{D}_{i j}^{(\mathrm{PS})} \quad \rightarrow \quad \mathcal{R}_{i j}
$$

(But Sudakov form factors $\Delta^{(P S)}$ remain unchanged)

- Soft/collinear emissions $Q_{i j, k}(z, t)<Q_{\text {cut }}$
\Rightarrow Retained from parton shower $\quad \mathcal{D}_{i j}^{(\mathrm{PS})}=\mathcal{B} \times\left[8 \pi \alpha_{s} \frac{1}{2 p_{i} p_{j}} \mathcal{K}_{i j}\left(p_{i}, p_{j}\right)\right]$

Note

Boundary determined by "jet criterion" $Q_{i j, k}$

- Has to identify soft/collinear divergences in MEs, like jet algorithm
- Otherwise arbitrary

Parton shower on top of high-multi ME

Translate ME event into shower language

Why?

- Need starting scales t for PS evolution
- Have to embed existing emissions into PS evolution

Problem: ME only gives final state, no history
Solution: Backward-clustering (running the shower reversed), similar to jet algorithm:

1 Select last splitting according to shower probablities
2 Recombine partons using inverted shower kinematics $\rightarrow \mathrm{N}$-1 particles + splitting variables for one node

Example:

3 Reweight $\alpha_{s}\left(\mu^{2}\right) \rightarrow \alpha_{s}\left(p_{\perp}^{2}\right)$
4 Repeat 1 - 3 until core process $(2 \rightarrow 2)$

Truncated shower

- Shower each (external and intermediate!) line between determined scales
- "Boundary" scales: resummation scale μ_{Q}^{2} and shower cut-off t_{0}

Cross section up to first emission in ME+PS

$$
\begin{aligned}
\mathrm{d} \sigma= & \mathrm{d} \Phi_{B} \mathcal{B}[\underbrace{\Delta^{(\mathrm{PS})}\left(t_{0}, \mu_{Q}^{2}\right)}_{\text {unresolved }}+\sum_{\{i j\}} \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{~d} t \Delta^{(\mathrm{PS})}\left(t, \mu^{2}\right) \\
& \times(\underbrace{\frac{\mathcal{D}_{i j}^{(\mathrm{PS})}}{\mathcal{B}} \Theta\left(Q_{\text {cut }}-Q_{i j}\right)}_{\text {resolved, } \mathrm{PS} \text { domain }}+\underbrace{\frac{\mathcal{R}_{i j}}{\mathcal{B}} \Theta\left(Q_{i j}-Q_{\mathrm{cut}}\right)}_{\text {resolved, ME domain }})]
\end{aligned}
$$

Features

- LO weight B for Born-like event
- Unitarity slightly violated due to mismatch of $\Delta^{(\mathrm{PS})}$ and $\mathcal{R} / \mathcal{B}$ $[\ldots] \approx 1 \Rightarrow$ LO cross section only approximately preserved
- Unresolved emissions as in parton shower approach
- Resolved emissions now sliced into PS and ME domain
- Only for one emission here, but possible up to high number of emissions

Features and shortcomings by example

Example

Diphoton production at Tevatron

- Measured by CDF Phys.Rev.Lett. 110 (2013) 101801
- Isolated hard photons
- Azimuthal angle between the diphoton pair

ME+PS simulation using Sherpa
Höche, Schumann, FS (2009)

Conclusions

Shapes described very well even for this non-trivial process/observable for both:

- Hard region, e.g. $\Delta \Phi_{\gamma \gamma} \rightarrow 0$
- Soft region, e.g. $\Delta \Phi_{\gamma \gamma} \rightarrow \pi$

Scale variations high \Rightarrow NLO needed

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSALO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj, ...)
- Objectives:

- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy

Combination: ME+PSRNLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. W, Wj, Wiji, ...
- Objectives:
- combine into one inclusive sample
- preserve NLO accuracy for jet observables

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:
- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSRLO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. W, Wj, Wjj, ...)
- Objectives:
- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy

Combination: ME+PSRNLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. $W, W j, W j j, \ldots$
- Objectives:
- combine into one inclusive sample
- preserve NLO accuracy for jet observables

Concepts continued from ME+PS merging at LO

- For each event select jet multiplicity k according to its inclusive NLO cross section
- Reconstruct branching history and nodal scales $t_{0} \ldots t_{k}$
- Truncated vetoed parton shower, but with peculiarities (cf. below)

Differences for NLO merging

- For each event select type (\mathbb{S} or \mathbb{H}) according to absolute XS
\Rightarrow Shower then runs differently
- \mathbb{S} event:

1 Generate Mc@NLO emission at t_{k+1}
2 Truncated "NLO-vetoed" shower between t_{0} and t_{k} : First hard emission is only ignored, no event veto
3 Continue with vetoed parton shower

- \mathbb{H} event:
(Truncated) vetoed parton shower as in tree-level ME+PS

ME+PS@NLO prediction for combining NLO+PS samples of multiplicities n and $n+1$

$$
\begin{aligned}
& \mathrm{d} \sigma=\mathrm{d} \Phi_{n} \overline{\mathrm{~B}}_{n}^{(\mathrm{A})}\left[\Delta_{n}^{(\mathrm{A})}\left(t_{c}, \mu_{Q}^{2}\right)+\int_{t_{c}}^{\mu_{Q}^{2}} \mathrm{~d} \Phi_{1} \frac{\mathrm{D}_{n}^{(\mathrm{A})}}{\mathrm{B}_{n}} \Delta_{n}^{(\mathrm{A})}\left(t_{n+1}, \mu_{Q}^{2}\right) \Theta\left(Q_{\mathrm{cut}}-Q_{n+1}\right)\right] \\
& +\mathrm{d} \Phi_{n+1} \mathrm{H}_{n}^{(\mathrm{A})} \Delta_{n}^{(\mathrm{PS})}\left(t_{n+1}, \mu_{Q}^{2}\right) \Theta\left(Q_{\mathrm{cut}}-Q_{n+1}\right) \\
& +\mathrm{d} \Phi_{n+1} \overline{\mathrm{~B}}_{n+1}^{(\mathrm{A})} \underbrace{\left(1+\frac{\mathrm{B}_{n+1}}{\overline{\mathrm{~B}}_{n+1}^{(\mathrm{A})}} \int_{t_{n+1}}^{\mu_{Q}^{2}} \mathrm{~d} \Phi_{1} \mathrm{~K}_{n}\right)} \Delta_{n}^{(\mathrm{PS})}\left(t_{n+1}, \mu_{Q}^{2}\right) \Theta\left(Q_{n+1}-Q_{\mathrm{cut}}\right) \\
& \times \\
& \times\left[\Delta_{n+1}^{(\mathrm{A})}\left(t_{c}, t_{n+1}\right)+\int_{t_{c}}^{\mathrm{MC} \mathrm{counterterm}^{t_{n+1}} \mathrm{NLO} \text {-vetoed shower }} \mathrm{d} \Phi_{1} \frac{\mathrm{D}_{n+1}^{(\mathrm{A})}}{\mathrm{B}_{n+1}} \Delta_{n+1}^{(\mathrm{A})}\left(t_{n+2}, t_{n+1}\right)\right] \\
& +\mathrm{d} \Phi_{n+2} \\
& \mathrm{H}_{n+1}^{(\mathrm{A})} \Delta_{n+1}^{(\mathrm{PS})}\left(t_{n+2}, t_{n+1}\right) \Delta_{n}^{(\mathrm{PS})}\left(t_{n+1}, \mu_{Q}^{2}\right) \Theta\left(Q_{n+1}-Q_{\mathrm{cut}}\right)+\ldots
\end{aligned}
$$

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

Example: pp $\rightarrow \mathbf{h}+$ jets

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

Example: pp $\rightarrow \mathbf{h}+$ jets

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

Example: pp $\rightarrow \mathbf{h}+\mathbf{j e t s}$

Höche, Krauss, Schönherr, FS (2012)

- Comparison to ATLAS measurement Phys.Rev. D85 (2012), 092002
- Significant reduction of ME+Ps@NLO scale uncertainties in "NLO" multiplicities
- Improved agreement with data

Results for W + jets: Angular correlations

- Pure Mc@NLO simulation misses correlations between the two leading jets

- Uncertainty reduction from 80% to 25% in 2 -jet bin
- Important BSM search selection: high total transverse energy \rightarrow major reduction of theoretical uncertainties compared to tree-level merging

NLO+PS matching

- Parton shower on top of NLO prediction (e.g. inclusive W production)
- Objectives:

- avoid double counting in real emission
- preserve inclusive NLO accuracy

ME+PSRLO merging

- Multiple LO+PS simulations for processes of different jet multi (e.g. $W, W j, W j j, \ldots$)
- Objectives:

- combine into one inclusive sample by making them exclusive
- preserve resummation accuracy

Combination: ME+PSRNLO

- Multiple NLO+PS simulations for processes of different jet multiplicity e.g. $W, W j, W j j, \ldots$
- Objectives:

- combine into one inclusive sample
- preserve NLO accuracy for jet observables
- I'm most certainly out of time by now.
- Nachsitzung?

