

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Sherpa+OpenLoops for tt+jets and tt+HF as backgrounds for ttH(H \rightarrow bb)

Frank Siegert

LHC Higgs XS, ttH subgroup, 10 Nov 2014

- last week: suffering from strong background contaminations, no control regions
- reducible: *tītjj* or *tīcī* with misidentified jets
- irreducible: *tītbb* continuum

Overview of modern MCs for $t\bar{t}(+\mathbf{HF})$

• NLO+PS matched $pp \rightarrow t\bar{t}$

Powheg, (a)MC@NLO, ...

- © *tījj* at shower accuracy
- \odot inclusive for (massless) $t\bar{t}$ + HF, but only at shower accuracy
- ME+PS@LO $pp \rightarrow t\bar{t} + 0j, 1j, 2j, \ldots$

Sherpa, Alpgen/MadGraph+Herwig/Pythia, ...

- © tītjj at leading order accuracy
- \odot inclusive for (massless) $t\bar{t}$ + HF, but below jet cuts only shower accuracy
- ME+PS@NLO $pp \rightarrow t\bar{t} + 0j, 1j, 2j, ...$ Sherpa+OpenLoops, aMC(aNLO(?)
 - Solution NLO accuracy for tījj
 - \odot inclusive for (massless) $t\bar{t}$ + HF, but below jet cuts only shower accuracy
- NLO+PS matched $pp \rightarrow t\bar{t} + b\bar{b}$

PowHel, Sherpa+OpenLoops

- \odot inclusive for $t\bar{t} + HF$ at NLO accuracy
- \odot not inclusive for $t\bar{t} + jets$
- \odot large logs at m_b threshold not taken into account in 4F scheme

- last week: suffering from strong background contaminations, no control regions
- reducible: *tītjj* or *tīcī* with misidentified jets
- irreducible: *tītbb* continuum

```
Overview of modern MCs for t\bar{t}(+HF)
```

- ME+PS@NLO $pp \rightarrow t\bar{t} + 0j, 1j, 2j, \ldots \leftarrow today$ Sherpa+OpenLoops, aMCGNLO(?)
 - Solution NLO accuracy for tījj
 - \odot inclusive for (massless) $t\bar{t}$ + HF, but below jet cuts only shower accuracy
- NLO+PS matched $pp \rightarrow t\bar{t} + b\bar{b} \leftarrow today$ PowHel, Sherpa+OpenLoops
 - \odot inclusive for $t\bar{t} + HF$ at NLO accuracy
 - \odot not inclusive for $t\bar{t} + jets$
 - \odot large logs at m_b threshold not taken into account in 4F scheme

Theoretical challenges for $t\bar{t}b\bar{b}$ calculations

- many coloured particles in pp → ttbb, ttjj or ttcc
 - \rightarrow large QCD corrections/uncertainties
 - $\rightarrow~$ complicated higher-order calculations
- several mass scales

Massive & matched calculation

Cascioli, Maierhöfer, Moretti, Pozzorini, FS (2013)

- NLO QCD calculation using automated tools in common framework:
 - SHERPA Gleisberg, Höche, Krauss, Schönherr, Schumann, Winter, FS (2008) tree-level matrix elements, dipole subtraction, parton shower matching
 - OPENLOOPS virtual corrections
 - COLLIER tensor integral reduction
- full *b*-quark mass dependence in 4-flavour-scheme
- matching to SHERPA's parton shower (S-MC@NLO)

Höche, Krauss, Schönherr, FS (2011)

Cascioli, Maierhöfer, Pozzorini (2011)

Denner, Dittmaier, Hofer (in prep.)

→ unexpected new contribution

 $pp \rightarrow t\bar{t}b\bar{b}$ setup

Simulation setup

- 4-flavour-scheme with finite *b*-mass and corresponding MSTW2008 PDFs + α_s
- top quarks treated as stable particles but LO decays could be included automatically with spin correlations
- renormalisation scale

$$\mu_R^4 \sim \prod_{i=t,\bar{t},b,\bar{b}} E_{\mathrm{T},i}$$

• factorisation and resummation scale

$$\mu_F \sim \mu_Q \sim \frac{1}{2} (E_{\mathrm{T},t} + E_{\mathrm{T},\bar{t}})$$

Analysis

- jet reconstruction using anti- k_t with R = 0.4
- "(idealised) experimental" *b*-tagging: *b*-jet = jet with at least one *b*-quark constituent \rightarrow allows for quasi-collinear *bb*-pairs
- require ≥ 2 *b*-jets with $p_{\perp} > 25$ GeV and $|\eta| < 2.5$
- Higgs signal region selection: m_{bb} > 100 GeV

Total cross sections

	ttb	ttbb	$ttbb(m_{bb} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{ m NLO}[m fb]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{ ext{S-MC@NLO}}[ext{fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181.0^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ ext{S-MC@NLO}}/\sigma_{ ext{NLO}}$	1.01	1.07	1.28
$\sigma^{2b}_{S-MC@NLO}[fb]$	3299	552	146
$\sigma^{\rm 2b}_{ m S-MC@NLO}/\sigma_{ m NLO}$	1.00	0.99	1.03

- uncertainty estimates from μ_R and $\mu_F \oplus \mu_Q$ variations
- large enhancement of S-MC@NLO prediction in $m_{bb} > 100 \text{ GeV}$ region!

A closer look at high m_{bb}

- clear enhancement of S-Mc@NLO prediction at high m_{bb}
- caused by double quasi-collinear $g \rightarrow b\bar{b}$ splitting

(technical test: absent if $g \rightarrow b\bar{b}$ switched off in PS \sim black line)

- contribution very relevant for Higgs search region *m_{bb}* > 100 GeV exceeds Higgs signal? ☺
- can only be simulated at this accuracy due to massive and PS matched calculation!

 topology of enhancement: back-to-back *b*-jets with smallest *p*⊥ to reach *m_{bb}* > 100 GeV
 ⇒ completely consistent with expectation from double splitting picture

ME+PS@NL0 $pp \rightarrow t\bar{t}$ +jets

Höche, Krauss Maierhöfer, Pozzorini, Schönherr, FS (2014)

Simulation setup:

- $pp \rightarrow t\bar{t} + 0j, 1j, 2j@NLO + 3j@LO$
- 5-flavour scheme with massless b-quarks in ME, massive b-quarks in PS evolution
- dileptonic decays
- uncertainty assessment from quadrature sum of:
 - envelope of all μ_R, μ_F factor-2-variations
 - μ_Q variation by factor $\sqrt{2}$
 - merging scale variation from $Q_{cut} = 20 \dots 40 \text{ GeV}$
 - varying parton shower kinematics (recoil schemes)

Analysis setup:

- anti- k_t jets with R = 0.4
- exactly one *b* and one \bar{b} -jet with $p_{\perp} > 25 \text{ Gev}, |\eta| < 2.5$

- assessment of merging-induced uncertainties in addition to perturbative uncertainties
- variation of merging scale: Q_{cut} = 20...30...40 GeV
- most sensitive observables: k_t splitting scales for 2 → 3 and 3 → 4 splitting (including the two b-quarks from top decays)

What about $pp \rightarrow t\bar{t}c\bar{c}$?

- generalise from $pp \rightarrow t\bar{t}b\bar{b}$ simulation? (technically trivial)
- not advisable(?): inclusive 3-flavour calculation does not resum logarithms close to the m_c thresholds, which should be more relevant than for m_b (where we found rather negligible effects)

Future with ME+PS@NL0

- future ME+PS@NLO samples will "allow for a consistent treatment of bb/cc"?
- yes and no: dedicated tt + HF still has the advantage of the inclusive massive NLO ME prediction even below 2-bjet cuts (e.g. "ttB" with merged bjets)
- MC authors have to work for consistent combination (overlap removal)

Shower dominance even in ME+PS-merged samples

- shower dominance not surprising if merging scale is at 40 GeV and jets defined at 15 or 25 GeV
- · more realistic cross check possibly with merging scale below analysis cut

Summary

- $\ensuremath{t\bar{t}}\xspace H$ measurements depend on precise Monte-Carlo predictions for background modelling
- Main background to $pp \rightarrow t\bar{t}H[\rightarrow b\bar{b}]$ from NLO+PS matched $pp \rightarrow t\bar{t}b\bar{b}$ calculation with massive *b*-quarks
- Surprising: large contribution from double collinear configurations in Higgs region

Outlook

- Consistent combination of $t\bar{t}H[\rightarrow b\bar{b}]$ backgrounds
 - inclusive, massive S-Mc@NLO prediction for $t\bar{t}b\bar{b}$
 - ME+PS@NLO prediction for $t\bar{t} + 0, 1, 2j$
- Predictions for *ttcc*: included in *tt*+jets or dedicated (3F?) *ttcc* needs more studies