

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Teilchenphysik mit dem Large Hadron Collider am CERN

Institutskolloquium der Physik und Chemie, TU Ilmenau

Frank Siegert

Ilmenau, 13.01.2015

Teilchenphysik mit dem Large Hadron Collider am CERN

Einleitung

Die Theorie dahinter Standardmodell im Schnelldurchgang

Die "Weltmaschine" am CERN Large Hadron Collider und ATLAS-Detektor

Präzise Theorievorhersagen

Teilchenphysik mit dem Large Hadron Collider am CERN

1 Einleitung

2 Die Theorie dahinter Standardmodell im Schnelldurchgang

Die "Weltmaschine" am CERN Large Hadron Collider und ATLAS-Detektor

Präzise Theorievorhersagen

Teilchenphysik mit dem Large Hadron Collider am CERN

1 Einleitung

Die Theorie dahinter Standardmodell im Schnelldurchgang

3 Die "Weltmaschine" am CERN Large Hadron Collider und ATLAS-Detektor

Präzise Theorievorhersagen

Teilchenphysik mit dem Large Hadron Collider am CERN

1 Einleitung

Die Theorie dahinter Standardmodell im Schnelldurchgang

Die "Weltmaschine" am CERN Large Hadron Collider und ATLAS-Detektor

Präzise Theorievorhersagen

Teilchenphysik mit dem Large Hadron Collider am CERN

Einleitung

2 Die Theorie dahinter Standardmodell im Schnelldurchgang

3 Die "Weltmaschine" am CERN Large Hadron Collider und ATLAS-Detektor

Präzise Theorievorhersagen

Warum Teilchenphysik?

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

Motivation

Warum Teilchenphysik?

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

Warum Teilchenphysik?

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

Wie?

. . .

Astroteilchen

Beschleuniger

Flavour/Neutrinos

Warum Teilchenphysik?

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

Wie?

Beschleuniger

Eine Prise Theorie Das Standardmodell im Schnelldurchgang

Fundamentale Bausteine der Materie

Materieteilchen tragen Spin 1/2 (= Fermionen)

Fundamentale Bausteine der Materie

• Materieteilchen tragen Spin 1/2 (= Fermionen)

Wechselwirkungen

• Austauschteilchen tragen Spin 1 (= Bosonen)

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

• Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Lokale Eichsymmetrie bedingt zusätzliche bosonische Felder = Wechselwirkungen:

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Lokale Eichsymmetrie bedingt zusätzliche bosonische Felder = Wechselwirkungen:
 - Fordere Invarianz unter lokaler Phasentransformation $\psi'=\psi\cdot {\rm e}^{i\chi(\vec{x},t)}$ (analog zu QM: $|\psi|^2=|\psi'|^2)$

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Lokale Eichsymmetrie bedingt zusätzliche bosonische Felder = Wechselwirkungen:
 - Fordere Invarianz unter lokaler Phasentransformation $\psi' = \psi \cdot e^{i\chi(\vec{x},t)}$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)
 - Problem: Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} \frac{mc}{\hbar})\psi = 0$ nicht invariant!

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Lokale Eichsymmetrie bedingt zusätzliche bosonische Felder = Wechselwirkungen:
 - Fordere Invarianz unter lokaler Phasentransformation $\psi' = \psi \cdot e^{i\chi(\vec{x},t)}$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

 - Problem: Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} \frac{mc}{\hbar})\psi = 0$ nicht invariant! Um Forderung zu erfüllen: "minimale Kopplung" durch kovariante Ableitung

$$\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$$
 mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

 \Rightarrow Eichfeld A_{μ} (Photon) vorhergesagt, mit Kopplung an elektrisch geladenes Fermion, und auch eichinvariantem kinetischen Term:

$$\mathcal{L}_{\rm em} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \text{ mit } F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Lokale Eichsymmetrie bedingt zusätzliche bosonische Felder = Wechselwirkungen:
 - Fordere Invarianz unter lokaler Phasentransformation $\psi' = \psi \cdot e^{i\chi(\vec{x},t)}$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

 - Problem: Freie Dirac-Gig $(i\gamma^{\mu}\partial_{\mu} \frac{mc}{\hbar})\psi = 0$ nicht invariant! Um Forderung zu erfüllen: "minimale Kopplung" durch kovariante Ableitung

$$\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$$
 mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

 \Rightarrow Eichfeld A_{μ} (Photon) vorhergesagt, mit Kopplung an elektrisch geladenes Fermion, und auch eichinvariantem kinetischen Term: $\mathcal{L}_{\rm em} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ mit $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$

 Ähnlicher (aber komplizierterer) Mechanismus f
ür starke und schwache Wechselwirkung

Nochmal als Lagrangedichte

- Bisher: Zeile 1 (Bosonen) + Zeile 2 (Fermionen, minimale Kopplung)
- Was verbirgt sich hinter "φ" und Zeile 3+4?

Nochmal als Lagrangedichte

- Bisher: Zeile 1 (Bosonen) + Zeile 2 (Fermionen, minimale Kopplung)
- Was verbirgt sich hinter "φ" und Zeile 3+4?

- Bisher gibt es keine Massenterme für Fermionen und Bosonen
- Naive Massenterme a la $\mathcal{L} \sim m_A^2 A_\mu A^\mu + m_f \bar{\psi}_L \psi_R$ sind nicht eichinvariant
- Experimentell finden wir jedoch Massen von Fermionen (e, μ , τ , quarks) und schwachen Eichbosonen (W^{\pm}, Z^{0})!

- Bisher gibt es keine Massenterme für Fermionen und Bosonen
- Naive Massenterme a la $\mathcal{L} \sim m_A^2 A_\mu A^\mu + m_f \bar{\psi}_L \psi_R$ sind nicht eichinvariant
- Experimentell finden wir jedoch Massen von Fermionen (e, μ , τ , quarks) und schwachen Eichbosonen (W^{\pm}, Z^{0})!

- Angenommen, wir hätten ein weiteres Feld ϕ
- Verhält sich als (komplexes) Doublet unter schwacher Isospin-Symmetrie: $\phi = (\Phi_1, \Phi_2)$

- Bisher gibt es keine Massenterme für Fermionen und Bosonen
- Naive Massenterme a la $\mathcal{L} \sim m_A^2 A_\mu A^\mu + m_f \bar{\psi}_L \psi_R$ sind nicht eichinvariant
- Experimentell finden wir jedoch Massen von Fermionen (e, μ, τ , quarks) und schwachen Eichbosonen (W^{\pm}, Z^{0})!

- Angenommen, wir hätten ein weiteres Feld ϕ
- Verhält sich als (komplexes) Doublet unter schwacher Isospin-Symmetrie: $\phi = (\Phi_1, \Phi_2)$
- Potentialterm $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$
- Spontane Symmetriebrechung durch Auswahl eines Vakuums im "Sombrero"-Rand: $\phi_0 = (0, v/\sqrt{2})$

- Bisher gibt es keine Massenterme für Fermionen und Bosonen
- Naive Massenterme a la $\mathcal{L} \sim m_A^2 A_\mu A^\mu + m_f \bar{\psi}_L \psi_R$ sind nicht eichinvariant
- Experimentell finden wir jedoch Massen von Fermionen (e, μ, τ , quarks) und schwachen Eichbosonen (W^{\pm}, Z^{0})!

- Angenommen, wir hätten ein weiteres Feld ϕ
- Verhält sich als (komplexes) Doublet unter schwacher Isospin-Symmetrie: $\phi = (\Phi_1, \Phi_2)$
- Potentialterm $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$
- Spontane Symmetriebrechung durch Auswahl eines Vakuums im "Sombrero"-Rand: $\phi_0 = (0, v/\sqrt{2})$
- $\begin{array}{l} \rightarrow \quad \mbox{eichinvariante Masseterme für Fermionen:} \\ \mathcal{L} \sim y_{ij}\phi\bar{\psi}_L\psi_R + h.c. \end{array}$

- Bisher gibt es keine Massenterme für Fermionen und Bosonen
- Naive Massenterme a la $\mathcal{L} \sim m_A^2 A_\mu A^\mu + m_f \bar{\psi}_L \psi_R$ sind nicht eichinvariant
- Experimentell finden wir jedoch Massen von Fermionen (e, μ, τ , quarks) und schwachen Eichbosonen (W^{\pm}, Z^{0})!

- Angenommen, wir hätten ein weiteres Feld ϕ
- Verhält sich als (komplexes) Doublet unter schwacher Isospin-Symmetrie: $\phi = (\Phi_1, \Phi_2)$
- Potentialterm $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$
- Spontane Symmetriebrechung durch Auswahl eines Vakuums im "Sombrero"-Rand: $\phi_0 = (0, v/\sqrt{2})$
- $\begin{array}{l} \rightarrow \quad \mbox{eichinvariante Masseterme für Fermionen:} \\ \mathcal{L} \sim y_{ij}\phi\bar{\psi}_L\psi_R + h.c. \end{array}$
- \rightarrow eichinvariante Masseterme für Bosonen aus Kopplung mit kovarianter Ableitung $\mathcal{L} \sim |D_{\mu}\phi|^2$

- Bisher gibt es keine Massenterme für Fermionen und Bosonen
- Naive Massenterme a la $\mathcal{L} \sim m_A^2 A_\mu A^\mu + m_f \bar{\psi}_L \psi_R$ sind nicht eichinvariant
- Experimentell finden wir jedoch Massen von Fermionen (e, μ, τ , quarks) und schwachen Eichbosonen (W^{\pm}, Z^{0})!

- Angenommen, wir hätten ein weiteres Feld ϕ
- Verhält sich als (komplexes) Doublet unter schwacher Isospin-Symmetrie: $\phi = (\Phi_1, \Phi_2)$
- Potentialterm $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$
- Spontane Symmetriebrechung durch Auswahl eines Vakuums im "Sombrero"-Rand: $\phi_0 = (0, v/\sqrt{2})$
- → eichinvariante Masseterme für Fermionen: $\mathcal{L} \sim y_{ij}\phi\bar{\psi}_L\psi_R + h.c.$
- \rightarrow eichinvariante Masseterme für Bosonen aus Kopplung mit kovarianter Ableitung $\mathcal{L} \sim |D_{\mu}\phi|^2$
- → 1 verbleibender Freiheitsgrad = neues skalares massives Teilchen: Higgs-Boson!

Zurück zur Lagrangedichte

- Zeile 1 (Bosonen) + Zeile 2 (Fermionen, minimale Kopplung)
- Zeile 3: fermionische Massenterme
- Zeile 4: Higgsdynamik und bosonische Massenterme

Zwei experimentelle Zutaten für die Higgs-Suche Large Hadron Collider und ATLAS-Detektor

- CERN (Conseil Européen pour la Recherche Nucléaire) ist größtes Forschungszentrum der Teilchenphysik
- 21 Mitgliedsstaaten, 3000 Mitarbeiter, 10000 Gastwissenschaftler
- Vor 60 Jahren für Forschung in Nachkriegseuropa gegründet
- Seitdem viele Beschleuniger, Experimente, und mehrere Nobelpreise
- Momentanes Aushängeschild: Large Hadron Collider (LHC)

Designkriterien

- Entdeckung eines Higgs-Bosons bis ca. 1 TeV Masse
- Verwendung des alten LEP-Tunnels (27 km)
- Konkurrenz zu US-amerikanischen Beschleunigern (Tevatron, SSC in Planung)

 \rightarrow Proton-Proton-Beschleuniger mit supraleitenden Führungsmagneten für hohe Kollisionsrate und hohe Strahlenergie

Eigenschaften

- Gesamtenergie zweier Protonen bei der Kollision: $\sqrt{s} = 14 \text{ TeV}$
- 1232 supraleitende Dipolmagnete, *l* = 13 m, *m* = 22 t, *B* = 8 T
- Betriebstemperatur: 1.9 K, gekühlt durch Flüssighelium (36800 t kalte Masse)
- Ultrahochvakuum: 3 · 10⁶ Molek./cm³ (~Weltall)

Designkriterien

- Entdeckung eines Higgs-Bosons bis ca. 1 TeV Masse
- Verwendung des alten LEP-Tunnels (27 km)
- Konkurrenz zu US-amerikanischen Beschleunigern (Tevatron, SSC in Planung)

 \rightarrow Proton-Proton-Beschleuniger mit supraleitenden Führungsmagneten für hohe Kollisionsrate und hohe Strahlenergie

Eigenschaften

- Gesamtenergie zweier Protonen bei der Kollision: $\sqrt{s} = 14 \text{ TeV}$
- 1232 supraleitende Dipolmagnete, *l* = 13 m, *m* = 22 t, *B* = 8 T
- Betriebstemperatur: 1.9 K, gekühlt durch Flüssighelium (36800 t kalte Masse)
- Ultrahochvakuum: 3 · 10⁶ Molek./cm³ (~Weltall)
- Pro Strahl 2808 Pakete mit je 10^{11} Protonen $\rightarrow 360 \text{ MJ}$ pro Strahl (= 400 t ICE bei 150 km/h)

Designkriterien

- Entdeckung eines Higgs-Bosons bis ca. 1 TeV Masse
- Verwendung des alten LEP-Tunnels (27 km)
- Konkurrenz zu US-amerikanischen Beschleunigern (Tevatron, SSC in Planung)

 \rightarrow Proton-Proton-Beschleuniger mit supraleitenden Führungsmagneten für hohe Kollisionsrate und hohe Strahlenergie

Eigenschaften

- Gesamtenergie zweier Protonen bei der Kollision: $\sqrt{s} = 14 \text{ TeV}$
- 1232 supraleitende Dipolmagnete, l = 13 m, m = 22 t, B = 8 T
- Betriebstemperatur: 1.9 K, gekühlt durch Flüssighelium (36800 t kalte Masse)
- Ultrahochvakuum: 3 · 10⁶ Molek./cm³ (~Weltall)
- Pro Strahl 2808 Pakete mit je 10^{11} Protonen $\rightarrow 360 \text{ MJ}$ pro Strahl (= 400 t ICE bei 150 km/h)
- Crossing-Rate $\approx 31 \text{ MHz}$, je $\approx 19 \text{ Kollisionen}$ $\rightarrow 600 \text{M}$ (inelastische) Kollisionen pro Sekunde!

Herausforderung: 1 interessantes Ereignis in 10¹³ uninteressanten!

Large Hadron Collider

- Tunnel in durchschnittlich 100 m Tiefe
- Unterhalb der Grenze Schweiz/Frankreich
- 4 Kollisionspunkte mit Teilchendetektoren

Wie weist man Elementarteilchen nach?

Historisch: Bildgebende Detektoren

- Sichtbare Teilchenspuren in Nebelkammer/Blasenkammer
- Manuelle Ausmessung der Krümmungsradien für Impulsmessung
 - ightarrow zu langsam für 600 MHz

Wie weist man Elementarteilchen nach?

Historisch: Bildgebende Detektoren

- Sichtbare Teilchenspuren in Nebelkammer/Blasenkammer
- Manuelle Ausmessung der Krümmungsradien für Impulsmessung
 - ightarrow zu langsam für 600 MHz

Elektronische Detektoren, z.B. ATLAS

- Messung elektrischer Signale
- Auswertung mit komplexen Software-Algorithmen
- Zwiebelförmige Struktur für Messung verschiedener Teilchenarten

ATLAS-Detektor

Querschnitt des ATLAS-Detektors

Created by T. Herrmann, O. Jeřábek, K. Jende, M. Kobel

ATLAS-Detektor

Die ATLAS-Kollaboration

38 Länder 175 Institute 3000 Physiker

Standardmodell-Messungen mit ATLAS

ATLAS-Detektor

Suchen nach "neuer Physik"

A	ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS										
Sta	tus: ICHEP 2014	ε, μ, τ, γ	Jote	Emiss	(£ drifts	1 Mass limit		$\sqrt{s} = 7, 8 \text{ TeV}$			
Inclusive Searches	BitUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM MSB(K-mspff) B2. =-mspff(1-mspff) B2. =-mspff(1-mspff) B3. =-mspff(1-mspff) GM (NLSP) GGM (wins NLSP) GGM (higgslin NLSP) Gawtino LSP Gawtino LSP Gawtino LSP GM MSB(MS) MLSP GGM (higgslin NLSP) Gawtino LSP	$\begin{array}{c} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 e, \mu + \gamma \\ 2 \gamma \\ 1 e, \mu + \gamma \\ 2 e, \mu \\ 2 e, \mu \\ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	1 13 4 13 4 13 4 13 5 13 4 13 5 13 6 13 7 13 8 13 9 13 9 13 10 13 11 13 12 13 13 13 14 13 15 14 16 13 17 14 18 14 19 14 10 14 10 14 11 14 12 14 13 14 14 14 15 14 16 14 17 14 18 14 19 14 10 14 10 14	17.164 nQ→n() 84 av nQ) 18.1 av nQ) 18.2 nQ) 18.4 nQ) 18.5 nQ) 18.5 nQ) 18.4 nQ) 18.4 nQ) 18.4 nQ) 18.5 nQ) 18.5 nQ)	1465.7075 ATLAS-CONF-2013-062 TLAS-CONF-2013-062 1465.7075 1465.7075 1465.7075 1465.7075 1467.0087-2013-062 1467.0087-2013-062 1467.0012-1012-1012 14124S-CONF-2012-1147 ATLAS-CONF-2012-1147			
3 rd gen. § med.	8-465 8-472 8-472 8-457	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	2 1.25 2 1.11 2 1.3 2 1.3 2 1.3	TeV m(?)<400 GeV V m(?)<350 GeV	1407.0000 1308.1841 1407.0000 1407.0000			
3rd gen. squarks direct production	$b_1b_1, b_2 \rightarrow b\ell_1^{(2)}$ $b_1b_1, b_2 \rightarrow b\ell_1^{(2)}$ $b_1b_1, b_2 \rightarrow b\ell_1^{(2)}$ $b_1b_1, b_2 \rightarrow b\ell_1^{(2)}$ $b_1^{(1)}(glegt), b_1^{(2)} \rightarrow Wb\ell_1^{(2)}$ $b_1^{(1)}(medium), b_1^{(2)} \rightarrow b\ell_1^{(2)}$ $b_1^{(1)}(medium), b_1^{(2)} \rightarrow b\ell_1^{(2)}$ $b_1^{(2)}(medium), b_1^{(2)} \rightarrow b\ell_1^{(2)}$	0 $2 e, \mu$ (SS) $1 - 2 e, \mu$ $2 e, \mu$ $2 e, \mu$ 0 $1 e, \mu$ 0 $1 e, \mu$ 0 $1 e, \mu$ 0	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b sono-jetic- 1 b 1 b	Yins Yins Yins Yins Yins Yins Yins Yins	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	5. 100-585 GW 5. 100-587 GW 5. 100-587 GW 5. 100-587 GW 5. 100-580 GW 5. 100-580 GW 5. 205-580 GW 5. 00-580 GW 5. 00-580 GW 5. 00-580 GW 5. 00-580 GW	(1), 40 GeV (1), 24 GeV (1), 25 GeV (1), 25 GeV (1), 25 GeV (1), 26 GeV	1208.2631 1404.2500 1208.4205, 1202.2102 1403.4853 1403.4853 1206.4853 1206.2631 1407.0583 1407.0583 1407.0583 1405.1122 1407.0583			
EW drect	$\begin{array}{c} \tilde{t}_{1,k} \tilde{t}_{1,k} = \tilde{t}_{-k} \ell_{1}^{0} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} = \tilde{t}_{-k} \ell_{1}^{0} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} = \tilde{t}_{-k} \ell_{1} \ell_{1} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} = \tilde{t}_{-k} \ell_{1} \ell_{1} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} = \tilde{t}_{-k} \ell_{1} \ell_{1} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} = W \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} = \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \tilde{x}_{1}^{*} \\ \tilde{x}_{1}^{*} \tilde{x}_{$	2 e.µ 2 e.µ 2 τ 3 e.µ 2 -3 e.µ 1 e.µ 4 e.µ	00.000	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	7 96-225 GeV 1 16-465 GeV 1 105-30 GeV 7 105-30 GeV 7 00 GeV 7 10 7 10 7 10 7 10 7 00 GeV 7 10 7 10 7 00 GeV 7 10 7 00 GeV 7 10 7 10	(i)dGaV m(i)dGaV m(i)dGaV(n)n.dS(m(i)m(i)) m(i)dGaV(n)n.dS(n)m(j) m(i)m(j)m(i)dS(n)(i)m(j) m(i)m(j)m(i)dS(n)(i)dS(n)(i)dS(n)(i) m(i)m(j)m(i)dS(n)dS(n)(i)	1403.5234 1403.5234 1407.0350 1402.7029 1403.5234,1402.7029 1403.5234,1402.7029 ATLAS-CONF-2013-003 1405.5085			
Long-lived particles	$\begin{array}{l} \begin{array}{l} \text{Direct} \mathcal{R}_{1}^{*}\mathcal{R}_{1}^{*} \text{prod.}, \log \text{-lived} \mathcal{R}_{1}^{*} \\ \text{Stable, atopsed} \mathcal{g} \text{R-hadron} \\ \text{GMSB, stable} \tau, \mathcal{R}_{2}^{0} {\rightarrow} \tau(\mathcal{R}, \mu) {+} \tau(e \\ \text{GMSB,} \mathcal{R}_{1}^{0} {\rightarrow} \tau \mathcal{G}, \log \text{-lived} \mathcal{R}_{1}^{0} \\ \text{QMSB,} \mathcal{R}_{1}^{0} {\rightarrow} \eta g \mu (\text{RPV}) \end{array}$	Disapp. trk 0 .μ) 1-2.μ 2.γ 1.μ, displ. vtə	1 jet 1-5 jets	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	x1 270 GeV 832 GeV 2 475 GeV 832 GeV 2 230 GeV 475 GeV 3 1.0 TeV 1.0 TeV	$\begin{split} m(\tilde{k}_1^2) + m(\tilde{k}_1^2) &= 160 \ MeV, \ \eta(\tilde{k}_1^2) &= 0.2 \ m \\ m(\tilde{k}_1^2) &= 100 \ GeV, \ 10 \ \mu = cr(\tilde{k}) < 1000 \ u \\ 10 < tr(\tilde{k}_1^2) < 0.0 \\ 0.4 < cr(\tilde{k}^2) < 2 \ m \\ 1.5 < cr<150 \ mm, \ MR(\mu) = 1, \ m(\tilde{k}_1^2) = 100 \ GeV \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092			
RPV	$\begin{array}{l} LFV pp \rightarrow \mathfrak{d}_r + X, \mathfrak{h}_r \rightarrow e + \mu \\ LFV pp \rightarrow \mathfrak{d}_r + X, \mathfrak{h}_r \rightarrow d(\mu) + \tau \\ Brinear RPV \ CMSSM \\ \mathfrak{K}_1^+ \mathfrak{K}_1^-, \mathfrak{K}_1^+ \rightarrow \mathfrak{W} \mathfrak{K}_1^0, \mathfrak{K}_1^+ \rightarrow e \mathfrak{h}_\mu, \mathfrak{e} \mathfrak{h}_\mu, \\ \mathfrak{K}_1^+ \mathfrak{K}_1^-, \mathfrak{K}_1^+ \rightarrow \mathfrak{W} \mathfrak{K}_1^0, \mathfrak{K}_1^+ \rightarrow e \tau \mathfrak{h}_r, \mathfrak{e} \mathfrak{p}_\mu, \\ \mathfrak{K}_1^+ \mathfrak{K}_1^-, \mathfrak{K}_1^+ \rightarrow \mathfrak{W} \mathfrak{K}_1^0, \mathfrak{K}_1^+ \rightarrow \tau \tau \mathfrak{h}_r, \mathfrak{e} \tau \mathfrak{h}_r, \\ \mathfrak{K}_r \rightarrow \mathfrak{g} \mathfrak{p} \\ \mathfrak{K}_r \rightarrow \mathfrak{g} \mathfrak{p} \\ \mathfrak{K}_r \rightarrow \mathfrak{g} \mathfrak{p} \\ \mathfrak{K}_r \rightarrow \mathfrak{p} \mathfrak{p} \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	0-3 h 0-3 h : 6-7 jets 0-3 h	' Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	5, 1.1 Te 4,2 1.1 Te 4,2 750 GeV 4,1 450 GeV 8 910 GeV	1.61 TeV J [*] ₁₁₁ 010, J [*] ₁₂₁ 000 V J [*] ₁₁₁ 010, J [*] ₁₂₁ 010 ST IeV R [*] ₁₁₁ 010, J [*] ₁₂₁ 01 m(t [*] ₁)>62m(t [*] ₁₁₁ 101 m(t [*] ₁₁)>62m(t [*] ₁₁₁ 1101 El(t)=R [*] ₁₁₁ 1101 El(t)=R [*] ₁₁₁ 1101	1212.1272 1212.1272 1404.2500 1405.5085 ATLAS-CONF-2013-091 1404.250			
other	Scalar gluon pair, agluon $\rightarrow q\bar{q}$ Scalar gluon pair, agluon $\rightarrow r\bar{r}$ WIMP interaction (DS, Dirac χ)	2 r.,µ (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	rgluon 108-267 GeV rgluon 350-500 GeV M ^e scale 704 GeV	incl. limit from 1110.2093 m(_k)<80 GeV, limit of <587 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147			
	√s = 7 TeV full data	√s = 8 TeV artial data	√s = full	8 TeV data		10-1 1	Mass scale [TeV]				

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS-Detektor

Suchen nach "neuer Physik"

	100.101121 2014						$\int L dt = (1.0 - 20.3) \text{ fb}^{-1}$	$V_{2} = 1, 0$ lev
	Model	ℓ, γ	Jets	ET	∫£ dt[fb	Mass limit		Reference
	ADD G _{KK} + g/q ADD non-resonant <i>ll</i>	2e, µ	1-2 j -	Yes -	4.7 20.3	4 ₀ 4.37 TeV 4 ₁ 5.2 TeV	a = 2 a = 3 HLZ	1210.4491 ATLAS-CONF-2014-03
Extra dimensions	DD QBH − 2 j DD QBH − 2 j DD BH high N _{bik} 2 μ (SS) −	2 j -	-	20.3 M _m 20.3 M _m 20.3 M _m	4a 5.2 TeV 4a 5.8 Te 4a 5.7 Te	a = 6 a = 6 a = 6, M _D = 1.5 TeV, non-ret BH	1311.2006 to be submitted to PRD 1308.4075	
	ADD BH high $\sum p_T$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow WW \rightarrow \ell r\ell r$	DD BH high $\sum p_T$ $\geq 1 e, \mu \geq 2$ ISI $G_{KK} \rightarrow \ell \ell$ $2 e, \mu$ - ISI $G_{KK} \rightarrow \ell \ell$ $2 e, \mu$ -	≥ 2 j 	j - 20.3 - 20.3 Ves 4.7	20.3 20.3 4.7	d _m 627 Keg cruss 2,63 TeV 1,23 TeV	$n = 6$, $M_D = 1.5$ TeV, non-rot BH $k/M_{Pl} = 0.1$ $k/M_{Pl} = 0.1$	1405.4254 1405.4123 1208.2880
	Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	2 e, µ	2 j / 1 J 4 b	-	20.3 19.5	Kex mass 730 GeV 500-710 GeV	$k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2014-020 ATLAS-CONF-2014-020
	Bulk HS $g_{KK} \rightarrow rr$ S^1/Z_2 ED UED	2 e, μ 2 γ			5.0 4.8	cc	BH = 0.365	ATLAS-CONF-2013-05 1209-2535 ATLAS-CONF-2012-07
suosous	$SSM Z' \rightarrow \ell\ell$ $SSM Z' \rightarrow \tau\tau$ $SSM W' \rightarrow \ell\nu$	2 e, μ 2 τ 1 e, μ	-	- Yes	20.3 19.5 20.3	Y mass 2.9 TeV Y mass 1.9 TeV Y mass 3.25 TeV		1405.4123 ATLAS-CONF-2013-068 ATLAS-CONF-2014-013
Gauge t	EGM $W' \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$ EGM $W' \rightarrow WZ \rightarrow qq\ell \ell$ LRSM $W'_R \rightarrow tb$ LBSM $W'_R \rightarrow tb$	3 e, µ 2 e, µ 1 e, µ	2j/1J 2b,0-1j >1b,1J	Yes Yes	20.3 20.3 14.3 20.3	1.52 TeV V mass 1.59 TeV V mass 1.59 TeV V mass 1.24 TeV V mass 1.24 TeV		1406-4455 ATLAS-CONF-2014-025 ATLAS-CONF-2013-055 In the submitted in FP.0
ũ	Cl qqqq Cl qqqt	2 e, µ	2 j		4.8 20.3	7	τ.6 TeV φ=+1 21.6 TeV φ _{t1} = −1	1210.1718 ATLAS-CONF-2014-03
МО	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, µ	1-2j	Yes Yes Yes	14.3	3.3 TeV 3.3 TeV 4. 731 GeV 2.4 TeV	<pre>(L) = 1 at 90% CL for m(χ) < 80 GeV at 90% CI for m(χ) < 80 GeV</pre>	ATLAS-CONF-2013-05 ATLAS-CONF-2012-14 1309-4017
٢o	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 nd gen	2 e 2 µ 1 e, µ, 1 :	≥ 2 j ≥ 2 j 1 b, 1 j	-	1.0 1.0 4.7	C mass 660 GeV C mass 685 GeV C mass 534 GeV	$\rho = 1$ $\rho = 1$ $\rho = 1$ $\rho = 1$	1112-4828 1203-3172 1303-0526
arks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow Wb + X$	1 e, μ 1 e, μ 2>3 e, μ	$\geq 2 b, \geq 4$ $\geq 1 b, \geq 3$ >2/>1 b	j Yes j Yes	14.3 14.3 20.3	T mass 790 GeV T mass 670 GeV T mass 735 GeV	T in (T,B) doublet lacepin singlet T in (T,B) doublet	ATLAS-CONF-2013-011 ATLAS-CONF-2013-081 ATLAS-CONF-2014-081
¥ 8	Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wb + X$	2/≥3 e, μ 2 e, μ (SS	$\geq 2/\geq 1$ b ≥ 1 b, ≥ 1	j Yes	20.3 14.3	1 mass 755 GeV 3 mass 720 GeV	B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2014-03 ATLAS-CONF-2013-05
Excited Brmions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $h^* \rightarrow Wr$	1 y - 1 00 2 m s	1j 2j	- -	20.3 20.3 4.7	* maas 3.5 TeV * maas 4.05 TeV * maas 870 GeV	only u^i and d^i , $\Lambda = m(q^i)$ only u^i and d^i , $\Lambda = m(q^i)$ initial baseded counties	1309-3230 to be submitted to PRD 1301-1583
	Excited lepton $\ell^* \to \ell \gamma$	2 e, µ, 1 y	-	-	13.0	* mass 2.2 TeV	$\Lambda=2.2~\text{TeV}$	1208.1364
18r	LISTO #7 -> WY LRSM Majorana v Type III Seesaw	2 e, µ 2 e, µ 2 e, µ	2j -	74es -	20.3 2.1 5.8	Off mass 960 GeV 6 ² mass 1.5 TeV 4 ¹ mass 245 GeV	$m(W_R) = 2$ TeV; no mixing $ V_e =0.055, V_e =0.063, V_e =0$ TC emission PR MINING (0.1)	10 be submitted to PLB 1203.5420 ATLAS-CONF-2013-011
õ	Multi-charged particles	τ υ, μ (00 -	· -	-	4.7	null-charged particle mass 490 GeV	DV production, q = 4e	1301.5272

"Only a selection of the available mass limits on new states or phenomena is shown.

Wie entdeckt man ein Higgs-Boson?

 Kopplungsstärke der Higgs-Bosonen proportional zu Teilchenmasse → v.a. an schwere Quarks (t und b) und schwache Eichbosonen (W, Z)

Higgs-Messungen mit Daten aus 2011-2012

Higgs-Messungen mit Daten aus 2011-2012

NB: Theorievorhersagen für Signal- und Untergrundprozesse

Präzise Theorievorhersagen

Analogie: Ist der Würfel manipuliert?

- Experiment: 600 Würfel
- Theorievorhersage: $N_i = 100$

Analogie: Ist der Würfel manipuliert?

- Experiment: 600 Würfel
- Theorievorhersage: $N_i = 100$

Teilchenphysik: Existiert das Higgs-Boson?

- Experiment: LHC-Kollisionsereignisse auf interessante Observablen projiziert
- Theorievorhersage mit/ohne Higgs: ? Nicht analytisch berechenbar!

 \Rightarrow Verwendung von Monte-Carlo-Programmen für stochastische Simulation der Theoriehypothese

• Theoretisch interessiert uns: Fundamentale Physik! $(gg \rightarrow t\bar{t}H)$

Kollisionsereignisse am LHC

- Theoretisch interessiert uns: Fundamentale Physik! $(gg \rightarrow t\bar{t}H)$
- Aber experimentell: $pp \rightarrow$ Hadronen Dynamik durch QCD bestimmt!

Kollisionsereignisse am LHC

- Theoretisch interessiert uns: Fundamentale Physik! $(gg \rightarrow t\bar{t}H)$
- Aber experimentell: $pp \rightarrow$ Hadronen Dynamik durch QCD bestimmt!
- Verbindung: Monte-Carlo Ereignisgeneratoren

Kollisionsereignisse am LHC

- Theoretisch interessiert uns: Fundamentale Physik! $(gg \rightarrow t\bar{t}H)$
- Aber experimentell: $pp \rightarrow$ Hadronen Dynamik durch QCD bestimmt!
- Verbindung: Monte-Carlo Ereignisgeneratoren
- Mein Schwerpunkt: Perturbative QCD
 - Matrix Element
 Feste Ordnung in
 Störungstheorie
 - Parton Shower
 Genäherte Resummation

Störungstheorie

- Exakte Berechnung von $gg \rightarrow t\bar{t}H$ nicht möglich
- Nur Störungsreihe in α_s (a la Feynman):

- Für Vorhersagen auf Hadronenniveau: Keine Konvergenz!
- \rightarrow Resummation der Reihe notwendig
 - Limitation durch enorme Komplexität!
 - Näherung: Resummiere nur universelle große Beiträge jeder Ordnung
 - Konkret in unserem Fall: Parton Shower (PS)
 = QCD-Bremsstrahlung entsprechend der großen Beiträge

"ME+PS@L0 Merging"

"ME+PS@L0 Merging"

Catani, Krauss, Kuhn, Webber (2001) Höche, Krauss, Schumann, FS (2009)

"ME+PS@NLO Merging"

Höche, Krauss, Schönherr, FS (2012)

Visualisierung von ME+PS@NLO

Beispiel: $pp \rightarrow h+jets$

29/33

Weitere ME+PS@NLO-Beispiele

W+jets

- Vergleich mit ATLAS-Messung Phys.Rev. D85 (2012), 092002
- Übereinstimmung mit Daten verbessert
- Signifikante Verringerung der Unsicherheiten im "NLO"-Bereich

Höche, Krauss, Schönherr, FS (2012)

- Vergleich mit ATLAS-Messung
 Phys.Rev. D85 (2012), 092002
- Übereinstimmung mit Daten verbessert
- Signifikante Verringerung der Unsicherheiten im "NLO"-Bereich

- Erste NLO+PS-Simulation für $pp \rightarrow t\bar{t} + 2jets$
- Unsicherheiten in BSM-Suchregion $H_T^{\text{tot}} > 500 \text{ GeV stark verringert!}$

Höche, Krauss, Maierhöfer, Schönherr, Pozzorini, FS (2014)

Zusammenfassung und Ausblick

- Das Higgs ist gefunden!
- Standardmodell vollständig beobachtet!
- → Ziel erreicht, Beschleuniger überflüssig?

Zusammenfassung und Ausblick

- Das Higgs ist gefunden!
- Standardmodell vollständig beobachtet!
- → Ziel erreicht, Beschleuniger überflüssig?

Zukünftige Herausforderungen

- Vermessung des Higgs-Bosons
 - Masse
 - Quantenzahlen
 - Differentielle Wirkungsquerschnitte
- Entdeckung von Physik jenseits des Standardmodells?
 - Supersymmetrische Partner
 - Exotische Resonanzen
 - Neue Kopplungsstrukturen

Höchste Präzision in theoretischen Vorhersagen für Signal und Untergrund notwendig

Vielen Dank für Ihre Aufmerksamkeit.

Anzeige

Promotion in experimenteller oder theoretischer Hochenergiephysik? http://cern.ch/fsiegert/group.html

Referenzen/Bildquellen

- Folie 3 "The 2008 Nobel Prize in Physics Popular Information". Nobelprize.org. Nobel Media AB 2014. Web. 5 Jan 2015. http://www.nobelprize.org/nobel_prizes/physics/laureates/2008/popular.html
- Folie 10 Nature Physics 7, 23 (2011)
- Folie 9+11 http://www.quantumdiaries.org/2011/06/26/cern-mug-summarizes-standard-model-but-is-off-by-a-factor-os
 - Folie 15 http://maps.google.de (modified)
 - Folie 20 Higgs XS working group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG; Wikimedia
 - Folie 31 http://www.toonpool.com/cartoons/Higgs%20Boson_172812
 - Weitere ©Netzwerk Teilchenwelt, CERN und ATLAS.