

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Parton shower simulations of SM processes with photons and comparison with LHC data

Frank Siegert

Workshop on Photon Physics at the LHC, Paris, 18 May 2015

0000

Fragmentation

Non-prompt

- separation between direct+fragmentation depends on order of calculation
- since parton shower goes beyond fixed-order there is no exact identification of these

But let's try ...

- LO matrix elements for photon production
- dressed with "softer" QCD parton shower emissions
- → missing higher-order corrections

- LO matrix elements for photon production
- dressed with "softer" QCD parton shower emissions
- → missing higher-order corrections

Fragmentation

- LO matrix elements for jet production
- "softer" QED parton shower emissions
- interleaved with OCD emissions
- → very inefficient due to low QED splitting probability

- LO matrix elements for photon production
- dressed with "softer" QCD parton shower emissions
- → missing higher-order corrections

Fragmentation

- LO matrix elements for jet production
- "softer" QED parton shower emissions
- interleaved with QCD emissions
- → very inefficient due to low QED splitting probability

Non-prompt

- hadron decays like $\pi \to \gamma \gamma$
- resummed QED FSR in hadron decays

Non-prompt

Fragmentation

- Multi-jet merging: improve shower evolution by including matrix elements with jet emissions
- conceptually interesting for photon production: higher-order QCD matrix elements contain both direct and fragmentation component (difference is only kinematics)
- need to define photon isolation and p_{\perp} requirements

Non-prompt

Factorisation scale vs. ME+PS merging cut

Problem: factorisation scale (e.g. $\mu_F = p_\perp^\gamma$) can become lower than merging cut \Rightarrow shower (and thus factorised cross section) is not able to fill phase space up to merging cut Q_{cut} \Rightarrow misses part of fragmentation component

- in many processes this is not a problem due to large μ_F
- here even relevant for higher p_{\perp}^{γ} generated from further emissions
- manifests itself as large merging cut dependence:

Factorisation scale vs. ME+PS merging cut

Solution: choose dynamical Q_{cut} depending on the μ_F of the event

• similar to DIS simulation Carli, Gehrmann, Höche (2009)

• example:
$$\left(\frac{Q_{\text{cut}}}{E_{\text{CMS}}}\right)^2 = \frac{\left(\frac{Q_{\text{cut}}^0}{E_{\text{CMS}}}\right)^2}{1.0 + \left(\frac{Q_{\text{cut}}^0}{E_{\text{CMS}}}\right)^2}$$

with $Q_{
m cut}^0$ nominal cut and safety factor $\kappa \lesssim 1.0$

Inclusiveness with respect to photon cuts

- so far only discussed QCD ME+PS merging, no QED parton shower involved there!
- photons always produced in matrix elements, hard and isolated
- alternatively: QED ME+PS merging Höche, Schumann, FS (2009)
 ⇒ inclusive with respect to photon cuts
- also possible to combine with QCD ME+PS

Marek Schönherr, PhD thesis (2011)

example:

$$\begin{array}{l} - \ pp \rightarrow e^{+}e^{-} \\ - \ pp \rightarrow e^{+}e^{-}\gamma \\ - \ pp \rightarrow e^{+}e^{-}\gamma\gamma \end{array}$$

- comparison of $m_{\ell\ell}$ from "dressed" leptons
 - YFS soft-photon resummation including NLO correction
 - pure QED shower
 - QED ME+PS
 - no QED radiation

Setup

- QCD ME+PS merging with dynamical Qcut
- Sherpa 2.1.1 using the default CT10-based tune
- full hadron level simulation, including multiple parton interactions
- LHC 7 TeV, comparison to ATLAS data (no CMS photon analyses published in Rivet yet?)

γ +jets

- $pp \rightarrow \gamma + 1, 2, 3$ jets
- $p_{\perp}^{\gamma} > 10 \text{ GeV}$
- Frixione isolation
- scaled by k = 1.15

$\gamma\gamma$ +jets

- $pp \rightarrow \gamma \gamma + 0, 1, 2$ jets
- $p_{\perp}^{\gamma} > 15 \text{ GeV}$
- $\Delta R(\gamma, \gamma) > 0.2$
- Frixione isolation

2010 Inclusive isolated prompt photon analysis ATLAS 2011 1921594

 \Rightarrow Good agreement in all regions of p_{\perp}^{γ} and η^{γ}

2010 Inclusive isolated prompt photon analysis ATLAS 2011 1921594

 \Rightarrow Good agreement in all regions of p_{\perp}^{γ} and η^{γ}

2011 Inclusive isolated prompt photon analysis ATLAS 2013 11263495

- good agreement in central region
- 10-20% deficiency in forward region
 → could be related to (potential?) forward jet excess (through photon isolation)

2011 photon + jet analysis ATLAS 2012 11093738

· central jet, good agreement

2011 photon + jet analysis ATLAS 2012 11093738

· forward jet, good agreement

2011 photon + jet analysis ATLAS 2012 11093738

very forward jet, good agreement

 → no forward jet excess? maybe just not for leading jet.

2011 inclusive diphoton analysis ATLAS 2012 11199269

• tension between good description of $m_{\gamma\gamma}$ and $p_{\perp\gamma\gamma}$

2011 inclusive diphoton analysis ATLAS 2012 11199269

 angular distributions: slightly worse description compared to earlier Sherpa versions

NLO multi-jet merging for $pp \rightarrow \gamma \gamma$

- other processes already available with NLO multi-jet merging ME+PS@NLO: Höche, Krauss, Schönherr, FS (2012)
- photon production was so far only available in ME+PS@LO
- here very very preliminary results from ongoing work towards $\gamma\gamma$ + 0,1jets @ NLO + 2,3jets @ LO

Höche, FS (in preparation)

current development version of the upcoming Sherpa 2.2.0 with NNPDF3.0 NNLO PDFs and the interface to OpenLoops 1.1.1 matrix elements

NLO multi-jet merging for $pp \rightarrow \gamma \gamma$

- other processes already available with NLO multi-jet merging ME+PS@NLO: Höche, Krauss, Schönherr, FS (2012)
- photon production was so far only available in ME+PS@LO
- here very very preliminary results from ongoing work towards $\gamma\gamma$ + 0,1jets @ NLO + 2,3jets @ LO

Höche, FS (in preparation)

current development version of the upcoming Sherpa 2.2.0 with NNPDF3.0 NNLO PDFs and the interface to OpenLoops 1.1.1 matrix elements

Summary

- modern parton shower event generators provide interesting options for hadron-level simulations of photon production at the LHC
- multi-jet merging is state-of-the-art
- good agreement in comparisons with LHC measurements

Outlook

- work ongoing to bring multi-jet merging to NLO accuracy for (di)photon production
- promising first results, but still work in progress
- will also try single photon + jets production in that approach