

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Das Durcheinander zähmen:

Präzise Simulationen für Kollisionen am Large Hadron Collider

Frank Siegert

Physikalisches Kolloquium, Dresden, 02.06.2015

Inhalt

Präzise Simulationen für Kollisionen am Large Hadron Collider

 Die Theorie dahinter Standardmodell im Schnelldurchgang

2 Die "Weltmaschine" am CERN Large Hadron Collider und ATLAS-Detektor

3 Präzise Theorievorhersagen

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

Wie?

. . .

Astroteilchen

Beschleuniger

Flavour/Neutrinos

"Daß ich erkenne, was die Welt Im Innersten zusammenhält"

Goethe

- Fundamentale Bausteine der Materie
- Deren fundamentale Wechselwirkungen

Wie?

Beschleuniger

Eine Prise Theorie Das Standardmodell im Schnelldurchgang

Fundamentale Bausteine der Materie

• Materieteilchen tragen Spin 1/2 (= Fermionen)

Fundamentale Bausteine der Materie

Materieteilchen tragen Spin 1/2 (= Fermionen)

Wechselwirkungen

• Austauschteilchen tragen Spin 1 (= Bosonen)

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

• Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

? Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} - mc/\hbar)\psi = 0$ nicht invariant!

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

- ? Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} mc/\hbar)\psi = 0$ nicht invariant!
- ! "Minimale Kopplung" durch kovariante Ableitung:

$$\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$$
 mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

- ? Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} mc/\hbar)\psi = 0$ nicht invariant!
- ! "Minimale Kopplung" durch kovariante Ableitung:

 $\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$ mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

 \Rightarrow Eichfeld A_{μ} (Photon) vorhergesagt

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

- ? Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} mc/\hbar)\psi = 0$ nicht invariant!
- ! "Minimale Kopplung" durch kovariante Ableitung:

$$\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$$
 mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

 \Rightarrow Eichfeld A_{μ} (Photon) vorhergesagt

Kopplung an Fermionen

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

- ? Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} mc/\hbar)\psi = 0$ nicht invariant!
- ! "Minimale Kopplung" durch kovariante Ableitung:

$$\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$$
 mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

 \Rightarrow Eichfeld A_{μ} (Photon) vorhergesagt

Kopplung an Fermionen

eichinvarianter kinetischer Term

$$A_{\mu}$$
 $\sim iq\gamma^{\mu}$

 $\mathcal{L}_{
m em} = -rac{1}{4}F_{\mu
u}F^{\mu
u}$

mit
$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

(Quanten-)Eichfeldtheorie am Beispiel des Elektromagnetismus

- Materieteilchen = fermionische Felder $\psi(\vec{x}, t)$
- Wechselwirkungen = bosonische Felder aus Eichsymmetrie:

Fordere Invarianz unter lokaler Phasentrafo $\psi' = \exp(i\chi(\vec{x},t)) \cdot \psi$ (analog zu QM: $|\psi|^2 = |\psi'|^2$)

- ? Freie Dirac-Glg $(i\gamma^{\mu}\partial_{\mu} mc/\hbar)\psi = 0$ nicht invariant!
- ! "Minimale Kopplung" durch kovariante Ableitung:

$$\partial_{\mu} \rightarrow D_{\mu} := \partial_{\mu} + \frac{iq}{\hbar} A_{\mu}$$
 mit Eichtransformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \chi(\vec{x}, t)$

 \Rightarrow Eichfeld A_{μ} (Photon) vorhergesagt

Kopplung an Fermionen eichinvarianter kinetischer Term

$$\mathcal{L}_{
m em} = -rac{1}{4}F_{\mu
u}F^{\mu}$$

mit
$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

ν

 Ähnlicher (aber komplizierterer) Mechanismus f
ür starke und schwache Wechselwirkung

Besonderheiten der starken Wechselwirkung

• Nicht-Abelsche Gruppe SU(3) definiert Eichtransformation

$$\psi_a' = \exp\left(i\,\theta^C(\vec{x},t)\,t_{ab}^C\right)\cdot\psi_b$$

- Jedes Quark kommt in 3 Ladungen: *a*, *b* = rot, grün, blau
- Modifizierter Feldstärketensor führt zu Gluon-Selbstkopplungen

• Asymptotische Freiheit und Confinement: Kopplung wächst wie Gummiband

$$g_s^2(Q^2) pprox rac{4\pi}{b_0 \ln Q^2/\Lambda^2}$$

- \Rightarrow Quarks treten nie als freie Teilchen auf
- ⇒ Beobachtung von Quarks nur als Hadronen-Bündel = "Jets"

Lagrangedichte des Standardmodells

- Bisher: Zeile 1 (Bosonen) + Zeile 2 (Fermionen, minimale Kopplung)
- Zeile 3: fermionische Massenterme
- Zeile 4: Higgsdynamik und bosonische Massenterme

Lagrangedichte des Standardmodells

- Bisher: Zeile 1 (Bosonen) + Zeile 2 (Fermionen, minimale Kopplung)
- Zeile 3: fermionische Massenterme
- Zeile 4: Higgsdynamik und bosonische Massenterme

Zwei experimentelle Zutaten Large Hadron Collider und ATLAS-Detektor

Large Hadron Collider am CERN

Designkriterien

- Higgs-Entdeckung bis m_H = 1 TeV (≈ 1000 Proton-Massen)
- Verwendung des LEP-Tunnels (27 km)
- Konkurrenz zu US-Beschleunigern (Tevatron, SSC in Planung)

↓ Proton-Proton-Secchleuniger mit supraleitenden Führungsmagneten für hohe Kollisionsrate und hohe Strahlenergie (E_{cms} = 14 TeV ≈ Tevatron ×7)

Large Hadron Collider am CERN

Designkriterien

- Higgs-Entdeckung bis m_H = 1 TeV (≈ 1000 Proton-Massen)
- Verwendung des LEP-Tunnels (27 km)
- Konkurrenz zu US-Beschleunigern (Tevatron, SSC in Planung)

↓ Proton-Proton-Seccheuniger mit supraleitenden Führungsmagneten für hohe Kollisionsrate und hohe Strahlenergie (E_{cms} = 14 TeV ≈ Tevatron ×7)

Kollisionsraten

- Pro Strahl 2808 Pakete (mit je $\sim 10^{11}$ Protonen) \rightarrow Crossing-Rate ≈ 31 MHz
- jeweils ≈ 20 Kollisionen

600 Mio Kollisionen pro Sekunde!

Large Hadron Collider am CERN

Designkriterien

- Higgs-Entdeckung bis m_H = 1 TeV (≈ 1000 Proton-Massen)
- Verwendung des LEP-Tunnels (27 km)
- Konkurrenz zu US-Beschleunigern (Tevatron, SSC in Planung)

↓ Proton-Proton-Schleuniger mit supraleitenden Führungsmagneten für hohe Kollisionsrate und hohe Strahlenergie (E_{cms} = 14 TeV ≈ Tevatron ×7)

Kollisionsraten

- Pro Strahl 2808 Pakete (mit je $\sim 10^{11}$ Protonen) \rightarrow Crossing-Rate ≈ 31 MHz
- jeweils ≈ 20 Kollisionen

₽

600 Mio Kollisionen pro Sekunde!

- Herausforderung: 1 interessantes Ereignis in 10¹²
- Beispiel bei Idealbedingungen: ~1 "Higgs $\rightarrow \gamma \gamma$ " Ereignis pro Stunde

Wie weist man Elementarteilchen nach?

Historisch: Bildgebende Detektoren

- Sichtbare Teilchenspuren in Nebelkammer/Blasenkammer
- Manuelle Ausmessung der Krümmungsradien für Impulsmessung
 - ightarrow zu langsam für 600 MHz

Wie weist man Elementarteilchen nach?

Historisch: Bildgebende Detektoren

- Sichtbare Teilchenspuren in Nebelkammer/Blasenkammer
- Manuelle Ausmessung der Krümmungsradien für Impulsmessung
 - ightarrow zu langsam für 600 MHz

Elektronische Detektoren, z.B. ATLAS

- Zwiebelförmige Struktur für Messung verschiedener Teilchenarten
- Messung elektrischer Signale
- Auswahl und Auswertung mit komplexen Software-Algorithmen

Standardmodell-Messungen mit ATLAS

A	ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS						
Old	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM $\tilde{q}_{1}, \tilde{q}_{-} q \tilde{t}_{1}^{2}$ (compressed) $\tilde{g}_{1}, \tilde{g}_{-} q \tilde{t}_{1}^{2}$ (compressed) $\tilde{g}_{2}, \tilde{g}_{-} q \tilde{q}_{1}^{2}$ ($\tilde{g}_{2}, \tilde{g}_{-} q q q \tilde{t}_{1}^{2}$ $\tilde{g}_{2}, \tilde{g}_{-} q q q \tilde{t}_{1}^{2}$ ($\tilde{g}_{2}, \tilde{g}_{-} q q q q \tilde{t}_{1}^{2}$ $\tilde{g}_{2}, \tilde{g}_{-} q q q q \tilde{t}_{1}^{2}$ ($\tilde{g}_{2}, \tilde{g}_{2}, \tilde{g}_{$	$\begin{matrix} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20 20.3 20.3 20.3 2	A 1 27 CB (100-m2) 4 250 GeV (100 m2) 5 25	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0805 1407.0805 1507.0805 1407.0805 1407.0805 1407.0805 1407.0805 1407.0805 1407.0805 1407.0805 1407.0805 1407.0805 1405.08
3 rd gen. <u>3</u> med.	$\bar{s} \rightarrow b \bar{b} \bar{\tilde{r}}_{1}^{0}$ $\bar{s} \rightarrow a \bar{t} \bar{\tilde{r}}_{1}^{0}$ $\bar{s} \rightarrow b \bar{s} \bar{\tilde{r}}_{1}^{+}$	0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ال (1,25 هـ) هر (1,25 هـ) ۲۰ هـ (1,17 هـ)	1407.0600 1308.1841 1407.0600 1407.0600
3rd gen. squarks direct production	$\begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow s\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow s\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{b}_{1}, \tilde{h} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{c}_{1}, \tilde{h} \rightarrow \tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{c}_{1}, \tilde{h} \rightarrow s\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{c}_{1}, \tilde$	0 $2 e, \mu$ (SS) $1 \cdot 2 e, \mu$ $2 e, \mu$ $0 \cdot 1 e, \mu$ 0 m $2 e, \mu$ (Z) $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b ono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	5. 199258 GeV ແຕ່ໂ/ເອດມາ 199258 GeV ແຕ່ໂ/ເອດມາ 199358 GeV 2014 GeV ແຕ່ໂ/ເອດມາ 199358 GeV ແຕ່ໂ/ເອດມາ 199358 GeV ແຕ່ໂ/ເອດມາ 199358 GeV ແຕ່ໂ/ເອດມາ 199358 GeV ແຕ່ໂ/ເອດມາ 199358 GeV ແຕ່ໂ/ເອດມາ 199358 GeV ແຕ່ໂ/ເອດມາ	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1408.1122 1407.0608 14005.5222 1403.5222
EW direct	$ \begin{split} \tilde{t}_{1,\mathbf{K}}\tilde{t}_{1,\mathbf{K}},\tilde{t} \rightarrow \delta \tilde{t}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \delta v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \delta v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{v}_{1}v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{v}_{1}v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow W \tilde{v}_{1}^{*}b \tilde{x}_{1}^{*}, h \rightarrow b \delta / W W / r r / \gamma \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*}\tilde{x}_{2}^{*}\tilde{x}_{2}^{*}, \tilde{x}_{2}^{*} \rightarrow \tilde{x}_{2}^{*} \end{split} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2 ·3 e,μ γ e,μ.γ 4 e,μ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5088
Long-lived particles	Direct $\tilde{x}_{1}^{+}\tilde{x}_{1}^{-}$ prod., long-lived \tilde{x}_{1}^{+} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{x}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau(c, j$ GMSB, $\tilde{x}_{1}^{0} \rightarrow y\tilde{G}$, long-lived \tilde{x}_{1}^{0} $\tilde{q}\tilde{q}, \tilde{x}_{1}^{0} \rightarrow q q$ (RPV)	Disapp. trk 0 trk 1) 1.2 µ 2 γ 1 µ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes	20.3 27.9 19.1 19.1 20.3 20.3	1 275 GeV 에너 가지 275 GeV 에너 가지 27 GeV 에너 가지 27 GeV 에너 가지 27 GeV 에너 가지 27 TeV 이너 17 TeV 00 Te	1310.3875 1310.8584 1411.8795 1411.8795 1409.5542 ATLAS-CONF-2013.092
ЧН	$\begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_{r} + X, \tilde{\mathbf{v}}_{r} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{\mathbf{v}}_{r} + X, \tilde{\mathbf{v}}_{r} \rightarrow e(\mu) + \tau \\ Blinner \ RPV \ CMSSM \\ \tilde{X}_{1}^{+}\tilde{X}_{1}, \tilde{X}_{1}^{+} \rightarrow WX_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow e\tilde{v}_{\mu}, e\mu \tilde{v}_{e} \\ \tilde{X}_{1}^{+}\tilde{X}_{1}, \tilde{X}_{1}^{+} \rightarrow WX_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow e\tilde{v}_{\mu}, er\tilde{v}_{r} \\ \tilde{x} \rightarrow aqq \\ \tilde{x} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	0-3 b 	Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	n. La Titel (* ,, 0.10,, 0.10) 5. Litel (* ,, 0.10,, 0.10) 5. Litel (* ,, 0	1212.1272 1212.1272 1404.2500 1405.5088 1405.5088 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_1^0$	0	20	Yes	20.3	ē 490 GeV m(l ² 1)<200 GeV	1501.01325
	full data pa	rtial data	Vs = full	data	1	⁻ Mass scale [TeV]	

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty

10

Mass scale [TeV]

ATLAS Exotics Searches* - 95% CL Exclusion

ATI AS Preliminary

Status: March 2015 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$ Jets E_x^{miss} (L dt[fb⁻¹] Model ℓ, γ Mass limit Reference ADD $G_{KK} + g/q$ Yes 20.3 5 25 Te\ 1502 01518 ADD non-resonant // 2e.u 20.3 4.7 TeV n = 3 HLZ 1407.2410 ADD QBH $\rightarrow \ell q$ 1 e, µ 20.3 5.2 TeV 1311,2006 ADD QBH 20.3 5.82 Te n = 6 1407.1378 ADD BH binb New 2 // (SS) 20.2 4.7 TeV n - 6 Mo - 3 TeV non-ort BH 1308 4075 ADD BH bigh 5 pr 20.3 5.8 Te n = 6 Mo = 3 TeV monut RH 1405 4254 ADD BH high multiet 5.8 Te n = 6. Mo = 3 TeV, non-rot BH Preliminary 20.3 BS1 $G_{KK} \rightarrow \ell\ell$ 2 e.u $k/\overline{M}_{Pl} = 0.1$ 1405.4123 20.3 RS1 $G_{KK} \rightarrow \gamma\gamma$ 20.3 2.66 TeV $k/\overline{M}_{P} = 0.1$ Preliminary $k/M_{Pl} = 0.1$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ 2 e, µ 2j/1J 20.3 1409.6190 $k/\overline{M}\mu = 1.0$ Bulk BS $G_{WW} \rightarrow WW \rightarrow anty$ 1 e, µ 2j/1J Ves 20.3 1503.04677 $k/M_{cl} = 1.0$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ 4 h 590-710 GeV ATLAS.CONF.2014.005 1 e. u > 1 b. > 1J/2i Yes Bulk BS gyr => tt 20.3 2.2 TeV BR = 0.925 ATLAS-CONE-2015-005 2UED / RPP 2 e.u (SS) > 1 b. > 1 i 20.3 Preliminary Yes SSM $7' \rightarrow ll$ 2 e, µ 20.3 1405 4129 SSM $Z' \rightarrow \tau \tau$ 195 2.02 TeV 1502.07177 SSM $W' \rightarrow f_V$ Ves 20.3 1407.7494 EGM $W' \rightarrow WZ \rightarrow \ell_Y \ell' \ell$ 3 e, µ Yes 20.3 1406.4456 90 EGM $W' \rightarrow WZ \rightarrow qq\ell\ell$ 2 e, µ 2j/1J 20.3 1.59 Te 1409.6190 $g_V = 1$ HVT $W' \rightarrow WH \rightarrow Cybb$ 1 e, µ 2 h Ves 20.3 47 TeV Preliminary 38 LRSM $W'_{\alpha} \rightarrow t\bar{t}$ 2 b. 0-1 i Ves 20.3 1 92 T 1410 4103 LBSM $W_{\perp}^{P} \rightarrow t\bar{t}$ 0 e.u >1b.1J 1408.0886 20.3 1.76 Te CLagan 21 2.0 TeV 714 = -1 Preliminary CI qqll 2 e. u 20.3 21.6 TeV $\eta_{LL} = -1$ 1407 2410 2 e.u (SS) > 1 b. > 1 i $|C_{11}| = 1$ Preliminary Ves 20.3 4.35 TeV EET D5 operator (Dirac 0 e, µ Yes 20.2 at 90% CL for m(y) < 100 GeV 1502.01518 FET D9 operator (Dirac) 0 e, µ Yes 20.3 2.4 TeV at 90% CL fry m(x) < 100 GeV 1309 4017 Scalar LQ 1st gen AnD 044 Scalar LQ 2nd gen 2μ 1.0 695 Gel $\beta = 1$ 1203.3172 Scalar LQ 3rd gen 1 e, µ, 1 T 16,11 4.7 534 GeV $\beta = 1$ 1303 0526 $VLQ TT \rightarrow Ht + X, Wb + X$ >1b.>3i Ves 20.3 isospin singlet VLQ $TT \rightarrow Zt + X$ 2/>3 e.u >2/>1 b 20.3 T in (TB) doubled VLQ $BB \rightarrow Zb + X$ 2/≥3 e,µ >2/>1 b 20.3 B in (B Y) doublet 1409.5500 $VLQ BB \rightarrow Wt + X$ 1 e, µ ≥ 1 b, ≥ 5 j Yes 20.3 isospin singlet Preliminary $T_{5/3} \rightarrow Wt$ 1 e, µ ≥1b, ≥5 j Preliminary Ves 20.3 Excited quark $a^* \rightarrow a_2$ 20.3 only u^* and d^* , $\Lambda = m(q^*)$ 1309.3230 Excited quark $q^* \rightarrow qg$ 20.3 only u^* and d^* , $\Lambda = m(q^*)$ 1407 1378 Excited quark b* → Wt left-handed coupling 1 or 2 e, µ 2 j or 1 j Yes 4.7 870 GeV 1301.1583 Excited lepton $\ell^* \rightarrow \ell \gamma$ A - 2.2 TeV 1308 1364 Excited lepton $y^* \rightarrow \ell W, \gamma Z$ $\Lambda = 1.6 \text{ TeV}$ 3 e. u. T 20.3 1411.2921 LSTC $a_T \rightarrow W_Y$ 1 e, µ, 1 y Yes 20.3 1407.8150 LRSM Majorana y 21 $m(W_{0}) = 2$ TeV, no mixing 20.4 2.1 1.5 TeV 1203 5420 Higgs triplet $H^{**} \rightarrow \ell \ell$ 2 e. u (SS) DY production, BR(H** → (ℓ)=1 20.3 Higgs triplet $H^{**} \rightarrow \ell \tau$ DY production, BR($H_{\tau}^{**} \rightarrow \ell \tau$)=1 1411.2921 3 e. u. T Monotop (non-res prod) 20.3 $s_{max-res} = 0.2$ 1 b Yes 1410.5404 Multi-charged particles 20.3 DY production, |q| = 5e Preliminary Magnetic monopoles 2.0 862 GeV DY production, |g| = 1g_D 1207.6411

 $\sqrt{s} = 7 \text{ TeV}$ *Only a selection of the available mass limits on new states or phenomena is shown.

 $\sqrt{s} = 8 \text{ TeV}$

 10^{-1}

Wie entdeckt man ein Higgs-Boson?

 Kopplungsstärke der Higgs-Bosonen proportional zu Teilchenmasse → v.a. an schwere Quarks (t und b) und schwache Eichbosonen (W, Z)

Dominiert durch Gluon-Gluon-Fusion:

Zerfälle

Sehr häufiger Zerfall:

Higgs-Messungen mit Daten von 2012

Higgs-Messungen mit Daten von 2012

Theorievorhersagen für Signal- und Untergrundprozesse notwendig!

Präzise Theorievorhersagen

Analogie: Ist der Würfel manipuliert?

- Experiment: 600 Würfel
- Theorievorhersage: $N_i = 100$

Analogie: Ist der Würfel manipuliert?

- Experiment: 600 Würfel
- Theorievorhersage: $N_i = 100$

Teilchenphysik: Existiert das Higgs-Boson?

- Experiment: LHC-Kollisionsereignisse auf interessante Observablen projiziert
- Theorievorhersage mit/ohne Higgs: ? Nicht analytisch berechenbar!

Kollisionsereignisse am LHC

Kollisionsereignisse am LHC

[ATLAS event display from 13 TeV collisions]

• Experimentell messen wir: $pp \rightarrow$ stabile Teilchen (z.B. Pionen)

- Experimentell messen wir: • $pp \rightarrow$ stabile Teilchen (z.B. Pionen)
- Aber theoretisch interessiert uns: ٠ Fundamentale Physik!

- Experimentell messen wir: $pp \rightarrow$ stabile Teilchen (z.B. Pionen)
- Aber theoretisch interessiert uns: Fundamentale Physik!

00000

موموم

• Verbindung: Monte Carlo-Simulation (QCD-Dynamik)

- Experimentell messen wir: $pp \rightarrow$ stabile Teilchen (z.B. Pionen)
- Aber theoretisch interessiert uns: Fundamentale Physik!

00000

• Verbindung: Monte Carlo-Simulation (QCD-Dynamik)

- Mein Schwerpunkt: Perturbative QCD
 - Matrix Element
 Feste Ordnung in
 Störungstheorie
 - Parton Shower
 Genäherte
 Resummation

• Exakte Berechnung von QCD-Effekten nicht möglich

Störungstheorie

- Exakte Berechnung von QCD-Effekten nicht möglich
- Nur Störungsreihe in α_s (a la Feynman):

Störungstheorie

- Exakte Berechnung von QCD-Effekten nicht möglich
- Nur Störungsreihe in α_s (a la Feynman):

- Für Vorhersagen auf Hadronenniveau: Keine Konvergenz!
- \rightarrow Resummation der Reihe notwendig
 - Enorme Komplexität!
 - Näherung: Resummiere nur universelle große Beiträge jeder Ordnung
 - Konkret in unserem Fall: Parton Shower (PS)
 = QCD-Bremsstrahlung entsprechend der großen Beiträge

Parton Shower Entwicklung

Parton Shower Entwicklung

2012 – Das Jahr des Higgs

2012 – Das Jahr des Higgs Multi-Jet Merging auf NLO

- Lavesson, Lönnblad (2008)
- Höche, Krauss, Schönherr, FS (2012)
- Frederix, Frixione (2012)
- Plätzer (2012)
- Alioli, Bauer, Berggren, Hornig, Tackmann, Vermilion, Walsh, Zuberi (2012)
- Lönnblad, Prestel (2012)
- Hamilton, Nason, Oleari, Zanderighi (2012)

Beispiel: $pp \rightarrow h+jets$

3

Beispiel: $pp \rightarrow h+jets$

Transversalimpuls des Higgs im Laborsystem [GeV]

300

Beispiel: $pp \rightarrow h+jets$

Beispiel: $pp \rightarrow h+jets$

Multi-Jet Merging mit Baumdiagrammen (LO)

Multi-Jet Merging mit Baumdiagrammen (LO)

Catani, Krauss, Kuhn, Webber (2001) Höche, Krauss, Schumann, FS (2009)

Multi-Jet Merging auf 1-Schleifen-Niveau (NLO)

Höche, Krauss, Schönherr, FS (2012)

Beispiel: $pp \rightarrow h+jets$

Visualisierung von ME+PS@NLO

Beispiel: $pp \rightarrow h+jets$

Weitere ME+PS@NLO Beispiele

W-Boson-Produktion am LHC

Höche, Krauss, Schönherr, FS (2012)

- Vergleich mit ATLAS-Messung Phys.Rev. D85 (2012), 092002
- Signifikante Reduktion der theoretischen Unsicherheiten
- Exzellente Übereinstimmung mit Experiment

Weitere ME+PS@NLO Beispiele

W-Boson-Produktion am LHC

Höche, Krauss, Schönherr, FS (2012)

- Vergleich mit ATLAS-Messung Phys.Rev. D85 (2012), 092002
- Signifikante Reduktion der theoretischen Unsicherheiten
- Exzellente Übereinstimmung mit Experiment

Weitere ME+PS@NLO Beispiele

1200

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, FS (2013)

Präzise Vorhersagen für $pp \rightarrow \ell\ell\nu\nu$ + jets

- Als Signal: SM-Messungen, Vektorbosonenstreuung, anomale Kopplungen, ...
- Als Untergrund: Higgs-Produktion, BSM-Suchen

Schwierigkeiten der Theorievorhersage

- Multi-Jet-Beschreibung f
 ür Untergrundunterdr
 ückung relevant
- WW^* -Produktion jenseits der Massenschale \Rightarrow nichtresonante Diagramme und Interferenzeffekte
- Schleifen-induzierte Prozesse ("LOOP²") wie $gg \to WW^*$ tragen in der Higgs-Signal-Region erheblich bei

Toolkit

- SHERPA mit Multi-Jet Merging auf NLO
- OPENLOOPS automatisierte 1-Schleifen Matrixelemente
- COLLIER Schnelle und stabile Tensorintegral-Reduktion

Höche, Krauss, Schönherr, FS (2012)

Cascioli, Maierhöfer, Pozzorini (2011)

Denner, Dittmaier, Hofer (2014)

⇒ QCD-NLO-Automatisierung

0-Jet-Produktion: Beispiele für $gg \rightarrow 4\ell$ -Diagramme

- Finiter Anteil der NNLO-Korrekturen
- Am LHC wegen hoher Gluon-Dichte relevant

1-Jet-Produktion

• Beispieldiagramme:

 \Rightarrow Hier erste Kombination von 0- und 1-jet LOOP² Prozessen

- Beitrag insgesamt im Prozentbereich
- Aber Veränderung des Untergrundverhaltens: größer in Higgs-Signalregion (z.B. niedrige m_{ℓℓ})

• 3% - 5% kombinierte Unsicherheit der MEPS@NLO-Vorhersage

• 3% - 5% kombinierte Unsicherheit der MEPS@NLO-Vorhersage

Zusammenfassung und Ausblick

- Das Higgs ist gefunden!
- Standardmodell-Teilchen vollständig beobachtet!
- → Ziel erreicht, Beschleuniger überflüssig?

Zusammenfassung und Ausblick

- Das Higgs ist gefunden!
- Standardmodell-Teilchen vollständig beobachtet!
- → Ziel erreicht, Beschleuniger überflüssig?

Zukünftige Herausforderungen

- Vermessung des Higgs-Bosons
 - Masse
 - Quantenzahlen
 - Differentielle Wirkungsquerschnitte
- Entdeckung von Physik jenseits des Standardmodells?
 - Supersymmetrische Partner
 - Exotische Resonanzen
 - Neue Kopplungsstrukturen

Höchste Präzision in theoretischen Vorhersagen für Signal und Untergrund notwendig

Vielen Dank für Ihre Aufmerksamkeit.

PS: Ab morgen wird's wieder spannend... Erste "stabile" 13 TeV Kollisionen erwartet!

Vielen Dank für Ihre Aufmerksamkeit.

PS: Ab morgen wird's wieder spannend... Erste "stabile" 13 TeV Kollisionen erwartet!

Werbung

Interesse? Bachelor-, Master-, oder Promotionsthema gesucht? http://cern.ch/fsiegert/group.html