

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Mehr als reiner Zufall

Neue Entwicklungen in Monte Carlo-Ereignisgeneratoren für den LHC

Frank Siegert

4. März 2016, DPG-Frühjahrstagung, Hamburg

[ATLAS event display from 13 TeV collisions]

eeeeeeee

- Im Detektor messen wir: stabile Hadronen
- Theoretisch interessiert uns: Fundamentale Physik!

• Exakte Berechnung von QCD-Effekten nicht möglich

- Exakte Berechnung von QCD-Effekten nicht möglich
 Nur Störungsreihe in α_s:
 - $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ &$

- Exakte Berechnung von QCD-Effekten nicht möglich
- Nur Störungsreihe in α_s :

- Für Vorhersagen auf Hadronenniveau: Keine Konvergenz!
- → Resummation der Reihe notwendig
 - Enorme Komplexität!
 - Näherung: Resummiere nur universelle große Beiträge jeder Ordnung
 - Konkret in unserem Fall: Parton-Shower (PS)
 - = QCD-Bremsstrahlung entsprechend der großen Beiträge

Präzision lautet die Devise

Präzision lautet die Devise?

Präzision der Untergrundsimulation egal?

Präzision lautet die Devise!

Präzision der Untergrundsimulation egal?

Signal = 10%-Effekt \Rightarrow Präzise Untergrundsimulation notwendig!

2012 – Das Jahr des Higgs

2012 – Das Jahr des Higgs Multi-Jet Merging auf NLO

- Lavesson, Lönnblad (2008)
- Höche, Krauss, Schönherr, FS (2012)
- Frederix, Frixione (2012)
- Plätzer (2012)
- Alioli, Bauer, Berggren, Hornig, Tackmann, Vermilion, Walsh, Zuberi (2012)
- Lönnblad, Prestel (2012)
- Hamilton, Nason, Oleari, Zanderighi (2012)

NLO-Genauigkeit für Multi-Jet-Observablen in inklusiver Simulation:

- Phasenraum der Jet-Emission aufgespalten, komplementär mit Matrixelement und Parton-Shower gefüllt
- Shower auf Multi-Parton-Konfigurationen ausgeführt \rightarrow resummierte Verteilungen/Vetos

 \Rightarrow Jet-Produktion mit exakten Matrixelementen, Intrajet-Evolution mit Parton-Shower

Erweiterung auf NLO-Genauigkeit

Erweiterung auf NLO-Genauigkeit

Frixione, Webber (2002)

Erweiterung auf NLO-Genauigkeit

Frixione, Webber (2002)

Beispiel: pp \rightarrow h+jets

Multi-Jet Merging mit NLO-Genauigkeit

Höche, Krauss, Schönherr, FS (2012)

Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, FS (2014)

Top-Quark-Paarproduktion

- Dominanter Untergrund f
 ür Suchen nach neuer Physik
- Relevant: H^{tot}_T > 500 GeV
 → Unsicherheiten von
 80% auf 20% reduziert!

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (2015)

Vektorboson-Produktion

- Resultate von MadGraph5_aMC@NLO + Pythia8(/Herwig++)
- Vergleich mit inklusiver NLO+PS-Simulation und Daten
- Variation der (unphysikalischen) Merging-Skala \rightarrow stabile Vorhersage

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, FS (2013)

Vorhersagen als Untergrund für Higgsproduktion

• $pp \rightarrow \ell \nu \ell \nu$ +jets in Signalregionen der $H \rightarrow WW^*$ -Analysen:

• Gesamt: $\approx 3\%$ Unsicherheit der MEPS@NLO-Vorhersage

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, FS (2013)

Vorhersagen als Untergrund für Higgsproduktion

2012 – Das Jahr des Higgs Multi-Jet Merging auf NLO

NNLO-Matching mit dem Parton-Shower

• NNLO-Präzision notwendig für Prozesse mit großem K-Faktor oder hoher experimenteller Genauigkeit

NNLOPS

Hamilton, Nason, Re, Zanderighi (2013)

- matching scheme based on MiNLO method
 - use $pp \rightarrow X + j$ NLO+PS simulation
 - apply scale choice and Sudakov form factor (like in multi-jet merging)
 - \Rightarrow finite for $p_{\perp}^{j} \rightarrow 0$
- reweight with fully-differential $pp \rightarrow X @ NNLO$

UN²LOPS

Höche, Li, Prestel (2014)

- matching scheme based on unitarised merging method Lönnblad, Prestel (2012)
- dedicated NNLO calculation using *q*_T-cutoff subtraction

Higgs-Produktion in Gluon-Fusion

NNLOPS-Vorhersagen

Hamilton, Nason, Re, Zanderighi (2013)

Hamilton, Nason, Zanderighi (2015)

 Vergleich mit analytischer Resummation in HqT (NNLL+NLO)

Higgs-Produktion in Gluon-Fusion

NNLOPS-Vorhersagen

Hamilton, Nason, Re, Zanderighi (2013) Hamilton, Nason, Zanderighi (2015)

 Vergleich mit analytischer Resummation in HqT (NNLL+NLO)

Vektorboson-Produktion

UN²LOPS-Vorhersagen

Höche, Li, Prestel (2014)

→ Vergleich mit experimentellen Daten

Im Experiment angekommen

Neue Herausforderungen

Josh McFayden, ATLAS (2016)

- CPU-intensive Rechnungen: Multiparton-Matrixelemente @ NLO
- Negative Gewichte aus NLO-Subtraktion
 ⇒ effektiv schlechtere Statistik

Notwendigkeit von Tuning

- mehrere simultane *pp*-Interaktionen in einem Crossing: Modellierung sehr inklusiver inelastischer Kollisionen
- Tuning auf Daten mit sehr inklusivem Trigger ("Minimum Bias")

- mehrere simultane *pp*-Interaktionen in einem Crossing: Modellierung sehr inklusiver inelastischer Kollisionen
- Tuning auf Daten mit sehr inklusivem Trigger ("Minimum Bias")

• Kalibration

– z.B. in Jet- oder τ -Identifikation und Rekonstruktion

- mehrere simultane *pp*-Interaktionen in einem Crossing: Modellierung sehr inklusiver inelastischer Kollisionen
- Tuning auf Daten mit sehr inklusivem Trigger ("Minimum Bias")
- Kalibration
 - z.B. in Jet- oder τ -Identifikation und Rekonstruktion
- Unfolding
 - Korrektur von Detektoreffekten aus Messungen
 - Abhängigkeit vom MC-Modell normalerweise klein, aber Teil der systematischen Unsicherheiten → Bedarf zuverlässiger Tunes

- mehrere simultane *pp*-Interaktionen in einem Crossing: Modellierung sehr inklusiver inelastischer Kollisionen
- Tuning auf Daten mit sehr inklusivem Trigger ("Minimum Bias")
- Kalibration
 - z.B. in Jet- oder τ -Identifikation und Rekonstruktion
- Unfolding
 - Korrektur von Detektoreffekten aus Messungen
 - Abhängigkeit vom MC-Modell normalerweise klein, aber Teil der systematischen Unsicherheiten → Bedarf zuverlässiger Tunes
- Untergrundabschätzung
 - Analysen subtrahieren Untergründe entweder direkt aus MC oder aus Extrapolation mit Hilfe von MC
 - Heikel: Tuning notwendig für Präzisionsmessungen/Entdeckungen? Nur nicht-perturbative Aspekte, um Bias zu vermeiden!

ATL-PHYS-PUB-2014-021

Mammutaufgabe

• Simultanes Tuning von Multiple Parton Interactions (MPI) und Parton-Shower in Pythia8 ⇒ 10 Parameter!

Parameter	Definition	Sampling range		
SigmaProcess:alphaSvalue	The α_S value at scale $Q^2 = M_Z^2$	0.12	-	0.15
SpaceShower:pT0Ref	ISR $p_{\rm T}$ cutoff	0.75	_	2.5
SpaceShower:pTmaxFudge	Mult. factor on max ISR evolution scale	0.5	-	1.5
SpaceShower:pTdampFudge	Factorisation/renorm scale damping	1.0	-	1.5
SpaceShower:alphaSvalue	ISR α_S	0.10	-	0.15
TimeShower:alphaSvalue	FSR α_S	0.10	-	0.15
BeamRemnants:primordialKThard	Hard interaction primordial k_{\perp}	1.5	-	2.0
MultipartonInteractions:pT0Ref	MPI $p_{\rm T}$ cutoff	1.5	-	3.0
MultipartonInteractions:alphaSvalue	MPI α_S	0.10	-	0.15
BeamRemnants:reconnectRange	CR strength	1.0	-	10.0

- Umfangreicher Input aus ATLAS-Messungen:
 - Underlying Event
 - Jet-Substruktur
 - Jet-Produktion
- Separate Tunes für 4 verschiedene PDFs

Simultan verbesserte Beschreibung von:

Zusammenfassung

- Monte Carlo-Ereignisgeneratoren sind
 - im Experiment unverzichtbar
 - und State-of-the-art Theorievorhersagen.

Ausblick

Viele weitere aktuelle Entwicklungen heute nicht diskutiert:

- Elektroschwache Korrekturen
 → Stefano Pozzorinis Vortrag heute Morgen
- Anwendungen in BSM-Prozessen
- Verbesserung der Resummationsgenauigkeit des Showers \rightarrow erste Schritte (VINCIA, DIRE, ...)

Zusammenfassung

- Monte Carlo-Ereignisgeneratoren sind
 - im Experiment unverzichtbar
 - und State-of-the-art Theorievorhersagen.

Ausblick

Viele weitere aktuelle Entwicklungen heute nicht diskutiert:

- Elektroschwache Korrekturen
 → Stefano Pozzorinis Vortrag heute Morgen
- Anwendungen in BSM-Prozessen
- Verbesserung der Resummationsgenauigkeit des Showers \rightarrow erste Schritte (VINCIA, DIRE, ...)

Thank You!