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Introduction
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LHC phenomenology

» Higgs/BSM signals with heavy particles decaying into high multiplicity final
states

» Backgrounds from simple SM processes with many additional jets
= Need good understanding of higher order QCD corrections to SM processes

Typical framework: Calculation to fixed order in «;, e.g. NLO

/2"
720 7/2°

Real emission matrix

Born level matrix element Virtual matrix element
element

This talk

Improving approximate resummation of the series with exact fixed order corrections
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Fixed order NLO calculations

Reminder + Notation: Subtraction method

» Contributions to NLO cross section: Born, Virtual and Real emission

» Vand R divergent in separate phase space integrations
= Subtraction method for cross section at NLO:

do™O) = S ey B+9+ZI§)
s 2

_ (S)
+2_d®r |R=> D
n G}
> Subtraction terms D and their integrated form 7
€.8. Frixione, Kunszt, Signer (1995); Catani, Seymour (1996)

> Subtraction defines phase space mappings ®r 2 (P, P1)
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Resummation in parton showers

collinear QCD emis!

» Universal factorisation of QCD real emission ME in collinear limit:

R e pPS) - B x (

5 8ras Kij (:Di,Pj))
DiD;

(PS)

i
B

> Differential branching probability: d”l?r anch = 27, AP1(t, 2, )

> Assume multiple independent emissions (Poisson statistics) => Exponentiation yields total
no-branching probability down to evolution scale t:
pES
AP = [[expq - > /d<1>1 O (t(®1) —t) 71;3
)

fi=a,9

Cross section up to first emission

do® = dop B

)
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Resummation in parton showers

» Universal factorisation of QCD real emission ME in collinear limit:

R e pPS) - B x (

5 8ras Kij (:Di,Pj))
DiD;

(0=55)

> Differential branching probability: d::rl?r anch = 27, AP1(t, 2, )

> Assume multiple independent emissions (Poisson statistics) => Exponentiation yields total
no-branching probability down to evolution scale t:

DI

AP = [[expq - > /d<1>1@(t(q’1) —t) ——
7

fi=a,9

Cross section up to first emission

PS
2
do™ = dap B[A“’S)(to + ZZ/ Fae, —24 AP ()
9 to

fi
unresolved

resolved
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Merging and matching fixed-order and resummation: Classification

NLO+PS matching ME+PS@LO merging

> Parton shower on top of NLO > Multiple LO+PS simulations for
prediction (e.g. inclusive W processes of different jet
production) multiplicity
> Objectives: eg. W, Wi, Wij, ...
> avoid double counting in real > Objectives:
emission > combine into one inclusive sample
> preserve inclusive NLO accuracy by making them exclusive

> preserve resummation accuracy

Combination of the two approaches above: ME+PS@NLO

> Multiple NLO+PS simulations for processes of different jet multiplicity
eg. W, Wj, Wij, ...
> Objectives:

> combine into one inclusive sample
> preserve NLO accuracy for jet observables
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Merging and matching fixed-order and resummation: Classification

NLO+PS matching

> Parton shower on top of NLO
prediction (e.g. inclusive W
production)

> Objectives:

> avoid double counting in real
emission
> preserve inclusive NLO accuracy
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From fixed order to resummation

> Applying PS resummation to LO event is simple \/

> Can the same simply be done separately for Band V + Z and R — D at NLO?

Different observable dependence in R and D X
but if showered separately = “double counting”

Solution: Let’s in the following ...

Frixione, Webber (2002)
> rewrite do(N©) a bit

> add PS resummation into the game leading to do
> do(NLO+PS) _ §5(NLO) 4, O(as)
> doNEOFPS) contains the first step of a PS evolution which can then be continued
trivially with a regular PS

(NLO+PS) and claim that:

> sketch how do YO FPS) js being generated in MC@NLO formalism
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From fixed order to resummation

dditional set of subtraction terms D)

e Zd«bB B +Z/d<I>R [R ZD(A>:|

{ij}

with B defined as:
F(A) _ (s) (A) (s)
BW =549+ 10+ 3 [am [p) 0P|
{3} {2} fi=a.9
» D) must have same kinematics mapping as D>
ij pping ij
> Exact choice of Dg\) will specify e.g. MC@NLO vs. POWHEG

» Difference between D*) and D(®) will allow later to determine how much
emission phase space is exponentiated
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From fixed order to resummation

Master formula for NLO+PS up to first emission

(A)
doNVOFFES) = N 4o BM (05) A(A)(t )+ > Z/ — AWM ) }
\—,_./

] 2} fi
B unreaolved il b to 5
resolved, singular

%)

+ Zd<1>R|: (Pr) — Zpﬁ)(‘b}%)]

resolved, non-singular =# (A)

> To O(as) this reproduces do(NLO) including the correction term
» Event generation in the following way:

> Generate seed event according to B) or #(*) according to their XS
> Second line (“H-event”): kept as-is — resolved, non-singular term
> First line (“S-event”): from one-step PS with AW

= emission (resolved, singular) or no emission (unresolved) above tq

> Resolved cases: Subsequent emissions can be generated by ordinary PS
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Special case: MC@NLO

To prove NLO accuracy:
D) needs to be identical in shower algorithm and real-emission events

Original idea: Alternative idea:

D@ = PS splitting kernels D®) = Catani-Seymour dipole
subtraction terms D)

Frixione, Webber (2002) (only potential difference: phase space cuts)

+ Shower algorithm for Born-like events ;
easy to imp]ement Héche, Krauss, Schonherr, FS (2011)

. ) o (a) + “Non-singular” piece fully free of
— “Non-singular” piece R — >, ;i D 3 divergences

is actually singular: — Splitting kernels in shower algorithm

> Collinear divergences subtracted by become negative
splitting kernels

> Remaining soft divergences as they Solution: Weighted N = 3 one-step PS based
appear in non-trivial processes at on subtraction terms

sub-leading N.

Workaround: G-function dampens soft limit in

non-singular piece Used in the followi
<> Loss of formal NLO accuracy sedm e fofowing

(but heuristically only small impact)

10/35
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Special case: POWHEG

Original POWHEG

» Choose additional subtraction terms as

(S)
D;;' (®r)
DE?)(‘I)R) — pij(Pr) R(®R)  where  p;;(®R) = Ji(s)

» H-term vanishes

> Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

» Subtract arbitrary regular piece from R and generate separately
DM (@) — pij(®R) [R(®R) — R"(®R)]  where  p;; asabove

> Allows to generate the non-singular cases of R without underlying 3

> More control over how much is exponentiated
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Results for W + n-jet production at the LHC
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ATLAS measurement (arXiv:1201.1276)
SHERPA+BLACKHAT NLO+PS predictions (arXiv:1201.5882)
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Merging and matching fixed-order and resummation: Classification

NLO+PS matching

> Parton shower on top of NLO
prediction (e.g. inclusive W
production)

> Objectives:

> avoid double counting in real
emission
> preserve inclusive NLO accuracy
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Merging and matching fixed-order and resummation: Classification

ME+PS@LO merging

> Multiple LO+PS simulations for
processes of different jet
multiplicity
eg W, Wj, Wijj,...
> Objectives:
> combine into one inclusive sample

by making them exclusive
> preserve resummation accuracy
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Tree-level ME+PS merging

Main idea

Phase space slicing for QCD radiation in shower evolution

» Hard emissions Q;; 1 (2,t) > Qcut

> Events rejected
> Compensated by events starting from higher-order ME (regularised by Qcut)

= Splitting kernels replaced by exact real emission matrix elements

Rijk

8o 8ra
- - z;,k( t) = B

STs you(zt) =
2pip; 2p;ip;

> Soft/collinear emissions Q;; 1 (2,t) < Qcut
= Retained from parton shower Kijr(z,t) = ICfJSk( t)

Boundary determined by “jet criterion” Q;; x
» Has to identify soft/collinear divergences in MEs, like jet algorithm

> Otherwise arbitrary
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Parton shower on top of high-multi ME

Translate ME event into shower language

Example:
Why? /
> Need starting scales ¢ for PS evolution \Ofmr
» Have to embed existing emissions into PS evolution ~ \° v
Problem: ME only gives final state, no history )
Solution: Backward-clustering (running the shower /
reversed), similar to jet algorithm: ~ :

[y

Select last splitting according to shower probablities

()

Recombine partons using inverted shower kinematics o}
— N-1 particles + splitting variables for one node

@

Reweight as (u?) — as(pi)

L

Repeat 1 - 3 until core process (2 — 2)

Truncated shower

» Shower each (external and intermediate!) line between determined scales
> “Boundary” scales: factorisation scale p%, and shower cut-off ¢,
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Master formula

Cross section up to first emission in ME+PS

2
1 I z 27 dq
do :désB[A(PS’(to,uz) + > 2/ dt/+dz/ NI
D — Tl us to z_ 0 27

unresolved

8T ag Rs;
(2:‘; KD (2,1) ©(Qeut — Qijk)  + —2% ©(Qijk — Qeut) )]

resolved, PS domain resolved, ME domain

Features

» LO weight B for Born-like event

» Unitarity slightly violated due to mismatch of A("S) and R/B
~ 1 = LO cross section only approximately preserved

» Unresolved emissions as in parton shower approach

v

Resolved emissions now sliced into PS and ME domain

v

Only for one emission here, but possible up to high number of emissions
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Features and shortcomings

Diphoton production at Tevatron

> Recently published by D@ Pphys Lett.B690:108-117,2010
» Isolated hard photons
» Azimuthal angle between the diphoton pair

ME+PS simulation using SHERPA with QCD+QED
interleaved shower and merging
Hoche, Schumann, FS (2010)

Conclusions

Shapes described very well even for this non-trivial
process/observable for both:

» Hard region, e.g. A®,, — 0
> Soft region, e.g. A®,, — 7

Total cross section too low = Virtual MEs needed

do/dAg,, [pb/rad]

MC/data

Azimuthal angle between the photons
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Merging and matching fixed-order and resummation: Classification

ME+PS@LO merging

> Multiple LO+PS simulations for
processes of different jet
multiplicity
eg W, Wj, Wijj,...
> Objectives:
> combine into one inclusive sample

by making them exclusive
> preserve resummation accuracy
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Merging and matching fixed-order and resummation: Classification

Combination of the two approaches above: ME+PS@NLO

» Multiple NLO+PS simulations for processes of different jet multiplicity &
eg. W, Wj, Wij, ...
> Objectives:

> combine into one inclusive sample
> preserve NLO accuracy for jet observables



ME+PS merging at NLO
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Basic idea

Concepts continued from ME+PS merging at LO

> For each event select jet multiplicity k according to
its inclusive NLO cross section

> Reconstruct branching history and nodal scales tg . . . j,

> Truncated vetoed parton shower, but with peculiarities (cf. below)

Differences for NLO merging

» For each event select type (S or H) according to absolute XS
= Shower then runs differently
> Sevent: Example: £ =1
1. Generate MC@NLO emission at t41

¢
2. Truncated “NLO-vetoed” shower between tq and tj: :

First hard emission is only ignored, no event veto ty

3. Continue with vetoed parton shower

» H event:
(Truncated) vetoed parton shower as in tree-level ME+PS
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Master formula

ME+PS@NLO prediction for combining NLO+PS samples of multiplicities » and n + 1
2

u
S(A) | AA) 2 7 D 2

do = dd, By A” (te, HQ) + / d®y Bi An (tn+1, MQ) O(Qcut — Qn+1)

n

te

A) A(PS :
+d@, 0 B AP, 0, ILZQ) O(Qeut — Qn+1)

HQ

_ Bpi1

+de, 40 BOY, <1+ e/ chuKn) AR (b1, 13) ©(Qni1 — Qut)
Bt tnt1

MC counterterm — NLO-vetoed shower

tn+41 DA
A 1A
X |:A(¢L<)',1(tcvtn+l> + / do, —+L A§L11<tn+21tn+l)
; Bnta
c

A
+d®, 40 HEL+>1 A(,I:jzl(tn#»2’tn+l) Ags)(tn+1»M2Q) O(Qnt1 — Qeut) + - -

20/35
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Results for eTe~ — hadrons: Setup

General setup

» ME generators (tree-level and dipole subtraction): AMEGIC++ and COMIX
» Virtual corrections from BLACKHAT

» MC@NLO-like generator built into SHERPA with full colour treatment

» Parton shower based on Catani-Seymour dipole factorisation

» Hadronisation model AHADIC++, not tuned for ME+PS@NLO yet
= Deviations in hadronisation sensitive regions

» Comparison to ALEPH and OPAL measurements:
Eur. Phys. J. C35 (2004), 457-486, Eur.Phys.]. C40 (2005), 287-316, Eur. Phys. J. C20 (2001), 601-615

Comparison of three runs

MC@NLO: NLO+PS prediction for 2 — 2

MENLOPS: MC@NLO for 2 — 2 + ME+PSup to 2 — 6
(g variation indicated by blue band

MEPS@NLO: MC@NLO for 2 — 2,3,4 + ME+PS for2 — 5,6
(g variation indicated by orange band



ME+PS merging at NLO
0@000000

Results for eTe~ — hadrons: Differential Durham jet rates

Durham jet resolution 3 — 2 (Ecyis = 912 GeV) Durham jet resolution 4 — 3 (Ecyis = 91.2 GeV)

1/0 do/dIn(y23)
1/ do/dIn(yss)

10 ALEPH data —e— ALEPH data
—— MEPs@NLo —— MEPs@NLo J:
10 s MEPS@NLo p/2...21 s MEPs@NLo p/2...2p :cf
—— MENLOPS —— MENLOPS 1
10— MENLOPS t/2...2u MENLOPS jt/2...21

&
£

—F
T

AN

T :
I JF \‘ i

g
: 5 :HH%‘

- 1* H = L
Rl = I PR IR N T rem e AN AL A A m‘am
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» Significant reduction of MEPS@NLO scale uncertainties in perturbative region

» Improved agreement with experimental data
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Results for eTe~ — hadrons: Differential Durham jet rates

Durham jet resolution 5 — 4 (Ecms = 91.2 GeV) Durham jet resolution 6 — 5 (Ecms = 91.2 GeV)
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> Scale uncertainty not reduced, due to sensitivity to 2 — 5, 6 partons (LO)
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Results for eTe~ — hadrons: Thrust event shape

Thrust (Ecms = 91.2 GeV) Moments of 1 — T at 91 GeV
= L B L L B B L e (O L B L B L B
T L 15 B —— OPALdata
3 E ERl E —— MEPs@Nio 3
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Results for e™

ME+PS merging at
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~ — hadrons: Total jet broadening event shape
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Results for e™

1/c do/dC

107"

10

C-Parameter (Ecys = 91.2 GeV)

ME+PS merging at
[e]e]e]e]e] lele)

~ — hadrons: C parameter event shape

Moments of C at 91 GeV
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Results for eTe~ — hadrons: Sphericity event shape

Sphericity (Ecms = 91.2 GeV) Moments of S at 91 GeV
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Results for e™

1/0do/d| cos(xsz)|
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— hadrons: Four-jet angles
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ME+PS merging at
0000000e

Korner-Schierholz-Willrodt angle (parton level)
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ME+PS merging at NLO
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Results for W + jets: Setup

General setup

» ME generators (tree-level and dipole subtraction): AMEGIC++ and COMIX
» Virtual corrections from BLACKHAT

» MC@NLO-like generator built into SHERPA with full colour treatment

» Parton shower based on Catani-Seymour dipole factorisation

» Hadronisation and multiple parton interactions not taken into account
(observables almost insensitive)

» CT10 PDF set

> Central scales y1p, g from clustering onto 2 — 2 configuration

Comparison of three runs

MC@NLO: NLO+PS prediction for 2 — 2

MENLOPS: MC@NLO for 2 — 2 + ME+PSup to 2 — 6
i, g Variation indicated by blue band

MEPS@NLO: MC@NLO for 2 — 2, 3,4 + ME+PS for 2 — 5,6
(o, r Variation indicated by orange band
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Results for W + jets: Jet multiplicities

£ 03 E s‘[‘nmwm \‘« KHAT
Inclusive Jet Multiplicity in r
T \ \ \ \ 2 b
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Nt
» Comparison to ATLAS measurement Phys.Rev. D85 (2012), 092002
» Significant reduction of MEPS@NLO scale uncertainties in “NLO” multiplicities
» Improved agreement with experimental data



ME+PS merging at NLO
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Results for W + jets: Leading jet transverse momentum
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Results for W + jets: Subleading jets transverse momenta
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Results for W + jets: Scalar transverse momentum sum Hrp
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» High Hy region affected by higher multiplicities = Larger scale uncertainty
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Results for W + jets: Angular correlations
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> Pure MC@NLO simulation misses correlations between the two leading jets
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Conclusions

Conclusions

Summar

> Several approaches for higher-order QCD effects have been introduced:

> NLO+PS matching for NLO and parton showers
> ME+PS merging of high-multiplicity tree-level matrix-elements with parton showers
» ME+PS@NLO merging, combining the two approaches above

> Results have been presented for ME+PS@NLO in ee — hadrons at LEP and
W +jets production at the LHC

» Significant improvements in the description of experimental data have been found

> Apply ME+PS@NLO to other processes (e.g. gg — h+jets, tt+ets, diboson+jets)

» Devise sound prescription to study uncertainties (perturbative, resummation,
non-perturbative)

» Incorporate EW NLO corrections into matching and merging



Backup: ME+PS@NLO correction term

Correction term of ME+PS@NLO wrt MC@NLO at given jet multiplicity k:

B(A)

X (PS
OVl = /d‘I’n+k+1 O(Qniyrt+1 — Qeut) A,(1+,2+1(tc,lt%g) Ontkt1
A
Bn+k A(Tl_?_k(tn+k+17tn+k):|
Bn+k Ag’j’_)k(tn+k+1:tn+k)

i (A)
X {Dm—k
BW

(A)
_B 1 _ Cntktl An+k+1(t6’tn+k+l)
ok Botrt1 AT (te,t R
ntk41\ler tntk+1

1—

with compound subtraction term
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