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Introduction: Monte-Carlo event generators

• We want:
Simulation of pp→ full
hadronised final state

• MC event representation
(e.g. pp→ t̄tH event)

• We know from first principles:

– Hard scattering at fixed
order in perturbation
theory
(Matrix Element)

– Approximate
resummation of QCD
corrections to all orders
(Parton Shower)

• Missing bits:
Hadronisation/Underlying
event (ignored here)
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Introduction: Monte-Carlo event generators

Outline
• Reminder: QCD perturbation theory

• The parton shower approximation
• Correcting that approximation as far

as possible:

– NLO+PS matching (2002)

– Tree-level ME+PS merging (2001)

– ME+PS merging at NLO (2012)
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Perturbation Theory

• Cannot solve QCD and calculate e.g. pp→ t̄tH exactly
• But can calculate parts of the perturbative series in αs:

. . .

∼ 1 ∼ αs ∼ α2
s

(“LO”) (“NLO”) (“NNLO”)

• Most precise calculations include O(α2
s ) for some processes

• α2
s ≈ 1%⇒ high enough precision, right?

• Why is that not always true?
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From fixed order to resummation

• Predictions for inclusive observables calculable at fixed-order
( KLN theorem for cancellation of infrared divergences)

• But if not inclusive→ finite remainders of infrared divergences:

logarithms of µ2
hard
µ2

cut
with each O(αs)

can become large and spoil convergence of perturbative series

Examples:
– Study certain regions of phase space, like pZ

⊥ ≈ 0 @ DY
– Making predictions for hadron-level final states: confinement at µhad ≈ 1 GeV

⇒ Need to resum the series to all orders
– Problem: We are not smart enough for that.
– Workaround: Resum only the logarithmically enhanced terms in the series

→ Parton Showers!
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Construction of a parton shower (PS)

Universal structure at all orders
• Factorisation of QCD real emission for collinear partons (i, j):

R → D(PS)
ij ≡ B ×

[
8παs

1
2pipj

Kij(pi, pj)
]

– R = real emission matrix element

– B = Born matrix element

– Massless propagator 1
2pipj

Later: Evolution variable of shower t ∼ 2pipj, e.g. k⊥, angle, . . .

– Kij splitting kernel for branching (ij)→ i + j
Specific form depends on factorisation scheme (DGLAP, Catani-Seymour, Antenna, ...)

• Factorisation of phase space element

dΦR → dΦB dΦ1 = dΦB dt
1

16π2 dz
dφ
2π

⇒ Combination gives differential branching probability

dσ(PS)
ij ∼ dt

D(PS)
ij

B ∼ dt
t
αs

2π
Kij
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Resummed branching probability

Resummation of multiple emissions
• dσ(PS)

ij is universal and appears for each emission

• How do we get the resummed branching probability according to multiple such
emissions?

→ Analogy to evolution of ensemble of radioactive nuclei:
Survival probability at time t1 depends on decay/survival at times t < t1

Radioactive decay
• Constant differential decay probability

f (t) = const ≡ λ

• Survival probabilityN (t)

−
dN
dt

= λN (t)

⇒ N (t) ∼ exp(−λt)

Parton shower branching
• Differential branching probability

f (t) ≡
D(PS)

ij

B

• Survival probabilityN (t)

−
dN
dt

= f (t)N (t)

⇒ N (t) ∼ exp
(
−
∫ t

0
dt′ f (t′)

)
6/30



Algorithmic PS implementation

Radioactive decay

• Survival probabilityN (t)

N (t) ∼ exp(−λt)

• Resummed decay probability P(t)

P(t) = f (t)N (t) ∼ λ exp(−λt)

Parton shower branching

• Survival probabilityN (t)

N (t) ∼ exp
(
−
∫ t

0 f (t′)dt′
)

• Resummed branching probability P(t)

P(t) = f (t)N (t) ∼ f (t) exp
(
−
∫ t

0
dt′ f (t′)

)

Parton shower recursion
• Generate next branching “time” t with probability

P(t, tprevious) = f (t) exp
(
−
∫ t

tprevious
f (t′)dt′

)
• Analytically:

t = F−1 [F(tprevious) + log(#random)
]

with F(t) =
∫ t

t0
dt′f (t′)

• If integral/its inverse are not known: “Veto algorithm” = extension of hit-or-miss
– Overestimate g(t) ≥ f (t) with known integral G(t)
→ t = G−1 [G(tprevious) + log(#random)

]
– Accept t with probability f(t)

g(t) using hit-or-miss
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Summary of main parton shower ingredients
• “Sudakov form factor” ≡ Survival probability of parton ensemble:

N (t) ∼ exp
(
−
∫ t

0
dt′ f (t′)

)
→ ∆(t′, t′′) =

∏
{ij}

exp

(
−
∫ t′′

t′
dt
D(PS)

ij

B

)

• Evolution variable t: not time, but scale of collinearity from hard to soft
t ∼ 2pipj ∼ e.g. angle θ, virtuality Q2, relative transverse momentum k2

⊥, . . .

• Starting scale µ2
Q (time t = 0 in radioactive decay) defined by hard scattering

• Cutoff scale related to hadronisation scale t0 ∼ µ2
had

• Other variables (z, φ) generated directly according to dσ(PS)
ij (t, z, φ)

⇒ Differential cross section (up to first emission)

dσ = dΦB B

[
∆

(PS)
(t0, µ

2
Q)︸ ︷︷ ︸

unresolved

+
∑
{ij}

∫ µ2
Q

t0

dt
dσ(PS)

ij

dt
∆

(PS)
(t, µ2

Q)

︸ ︷︷ ︸
resolved

]
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Visualisation

Example: pp → h+jets
P
S

α0
s

α0
s

α0
s
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Parton shower improvements: Classification

NLO+PS matching
• Parton shower on top of NLO

prediction (e.g. inclusive W
production)

• Objectives:
– avoid double counting in real

emission
– preserve inclusive NLO

accuracy

ME+PS@LO merging
• Multiple LO+PS simulations for

processes of different jet multi
(e.g. W, Wj, Wjj, . . . )

• Objectives:
– combine into one inclusive

sample by making them
exclusive

– preserve resummation
accuracy

⇓ ⇓
Combination: ME+PS@NLO

• Multiple NLO+PS simulations for processes of different jet multiplicity
e.g. W, Wj, Wjj, . . .

• Objectives:
– combine into one inclusive sample
– preserve NLO accuracy for jet observables
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NLO+PS matching in a nutshell

P
S

α0,1
s

α0,1
s

α0,1
s

α1
s

α1
s

Basic idea
• “double-counting” between emission in real ME and

parton shower
• ME is better than PS→ subtract PS contribution first
• but: shower unitary→ re-add “integrated” PS

contribution with Born kinematics

Subtlety: NLO already contains subtraction

dσ(NLO)
= dΦB

B + Ṽ +
∑
{ij}

I(S)
(ij)

 + dΦR

R−∑
{ij}

D(S)
ij


Additional subtraction
• introduce additional (shower) subtraction terms D(A)

ij

dσ(NLO sub)
= dΦB B̄(A)

+ dΦR

R−∑
{ij}

D(A)
ij


with B̄(A)

= B + Ṽ +
∑
{ij}

I(S)
(ij) +

∑
{ij}

∫
dt
[
D(A)

ij −D(S)
ij

]
• now apply PS resummation using D(A)

ij as splitting kernels
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NLO+PS matching in a nutshell

Master formula for NLO+PS up to first emission

dσ(NLO+PS)
= dΦB B̄(A)

[
∆

(A)
(t0, µ

2
Q)︸ ︷︷ ︸

unresolved

+
∑
{ij}

∫ µ2
Q

t0

dt
D(A)

ij

B
∆

(A)
(t, µ2

Q)

︸ ︷︷ ︸
resolved, singular

]

+ dΦR

R−∑
{ij}

D(A)
ij


︸ ︷︷ ︸

resolved, non-singular≡H(A)

• To O(αs) this reproduces dσ(NLO)

• Exact choice of D(A)
ij distinguishes MC@NLO vs. POWHEG vs. S-MC@NLO vs. . . .

• Event generation: B̄(A) orH(A) seed event according to their XS

– First line (“S-event”): from one-step PS with ∆(A)

⇒ emission (resolved, singular) or no emission (unresolved) above t0
– Second line (“H-event”): kept as-is→ resolved, non-singular term

• Resolved cases: Subsequent emissions can be generated by ordinary PS
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Special cases: MC@NLO vs. S-MC@NLO

MC@NLO
Frixione, Webber (2002)

D(A) = D(PS) = PS splitting kernels

+ Shower algorithm for Born-like events
easy to implement

− “Non-singular” pieceR−
∑

ijD
(A)
ij

is actually singular:
– Collinear divergences

subtracted by splitting kernelsX
– Remaining soft divergences as

they appear in non-trivial
processes at sub-leading Nc %

Workaround: G-function dampens soft limit
in non-singular piece

⇔ Loss of formal NLO accuracy
(but heuristically only small impact)

S-MC@NLO
Höche, Krauss, Schönherr, FS (2011)

D(A) = D(S) = Subtraction terms

+ “Non-singular” piece fully free of
divergences

− Splitting kernels in shower algorithm
become negative

Solution: Weighted NC = 3 one-step PS
based on subtraction terms

⇓
Used in SHERPA
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Special case: POWHEG

Original POWHEG
• Choose additional subtraction terms as

D(A)
ij → ρijR where ρij =

D(S)
ij∑

mnD
(S)
mn

• H-term vanishes⇒ No negative weighted events
• Similar to PS with ME-correction for 1st emission (e.g. Herwig, Pythia)

Mixed scheme
• Subtract arbitrary regular piece fromR and generate separately as H-events

D(A)
ij (ΦR)→ ρij(ΦR)

[
R(ΦR)−Rr

(ΦR)
]

where ρij as above

• Tuning ofRr to reduce exponentiation of arbitrary terms
• Allows to generate the non-singular cases ofR without underlying B
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Inherent systematic uncertainties

Perturbative uncertainties
• Unknown higher-order corrections
• Estimated by scale variations
µF = µR = 1

2µ . . . 2µ

Non-perturbative uncertainties
• Model uncertainties in hadronisation, hadron decays, multiple parton

interactions
• Estimated by variation of parameters/models within tuned ranges

Resummation uncertainties
• Arbitrariness of D(A) and thus of the exponent in ∆(A)

• Estimated by:
– Variations of µ2

Q in MC@NLO

– (Variation ofRr in POWHEG)
• Reduced by merging with NLO for higher parton multiplicities later
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Visualisation

Example: pp → h+jets

pp → h + jets
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Parton shower improvements: Classification

NLO+PS matching
• Parton shower on top of NLO

prediction (e.g. inclusive W
production)

• Objectives: X
– avoid double counting in real

emission
– preserve inclusive NLO

accuracy

ME+PS@LO merging
• Multiple LO+PS simulations for

processes of different jet multi
(e.g. W, Wj, Wjj, . . . )

• Objectives:
– combine into one inclusive

sample by making them
exclusive

– preserve resummation
accuracy

⇓ ⇓
Combination: ME+PS@NLO

• Multiple NLO+PS simulations for processes of different jet multiplicity
e.g. W, Wj, Wjj, . . .

• Objectives:
– combine into one inclusive sample
– preserve NLO accuracy for jet observables
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Tree-level ME+PS merging

Main idea
Phase space slicing for QCD radiation in shower evolution
• Hard emissions Qij(z, t) > Qcut

– Events rejected Sudakov suppression
– Compensated by events starting from higher-order ME regularised by Qcut

⇒ Splitting kernels replaced by exact real-emission matrix elements

D(PS)
ij → Rij

(But Sudakov form factors ∆(PS) remain unchanged)
• Soft/collinear emissions Qij,k(z, t) < Qcut

⇒ Retained from parton shower D(PS)
ij = B ×

[
8παs

1
2pipj
Kij(pi, pj)

]

Note
Boundary determined by “jet criterion” Qij,k

• Has to identify soft/collinear divergences in MEs, like jet algorithm
• Otherwise arbitrary
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Parton shower on top of high-multi ME

Translate ME event into shower language

Why?

• Need starting scales t for PS evolution
• Have to embed existing emissions into PS evolution

Problem: ME only gives final state, no history

Solution: Backward-clustering (running the shower
reversed), similar to jet algorithm:

1 Select last splitting according to shower probablities

2 Recombine partons using inverted shower kinematics
→ N-1 particles + splitting variables for one node

3 Reweight αs(µ
2)→ αs(p2

⊥)

4 Repeat 1 - 3 until core process (2→ 2)

Example:

⇓

t2

⇓
t1

t2

Truncated shower
• Shower each (external and intermediate!) line between determined scales
• “Boundary” scales: resummation scale µ2

Q and shower cut-off t0
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Master formula

Cross section up to first emission in ME+PS

dσ = dΦB B
[

∆
(PS)

(t0, µ
2
Q)︸ ︷︷ ︸

unresolved

+
∑
{ij}

∫ µ2
Q

t0

dt ∆
(PS)

(t, µ2
)

×
( D(PS)

ij

B
Θ
(

Qcut − Qij
)

︸ ︷︷ ︸
resolved, PS domain

+
Rij

B
Θ
(

Qij − Qcut
)

︸ ︷︷ ︸
resolved, ME domain

)]

Features
• LO weight B for Born-like event

• Unitarity slightly violated due to mismatch of ∆(PS) andR/B[
. . .
]
≈ 1⇒ LO cross section only approximately preserved

• Unresolved emissions as in parton shower approach
• Resolved emissions now sliced into PS and ME domain
• Only for one emission here, but possible up to high number of emissions
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Features and shortcomings by example

Example
Diphoton production at Tevatron
• Measured by CDF Phys.Rev.Lett. 110 (2013) 101801

• Isolated hard photons
• Azimuthal angle between the diphoton pair

ME+PS simulation using SHERPA
Höche, Schumann, FS (2009)

Conclusions
Shapes described very well even for this non-trivial
process/observable for both:
• Hard region, e.g. ∆Φγγ → 0
• Soft region, e.g. ∆Φγγ → π

Scale variations high⇒ NLO needed
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Parton shower improvements: Classification

NLO+PS matching
• Parton shower on top of NLO

prediction (e.g. inclusive W
production)

• Objectives: X
– avoid double counting in real

emission
– preserve inclusive NLO

accuracy

ME+PS@LO merging
• Multiple LO+PS simulations for

processes of different jet multi
(e.g. W, Wj, Wjj, . . . )

• Objectives: X
– combine into one inclusive

sample by making them
exclusive

– preserve resummation
accuracy

⇓ ⇓
Combination: ME+PS@NLO

• Multiple NLO+PS simulations for processes of different jet multiplicity
e.g. W, Wj, Wjj, . . .

• Objectives:
– combine into one inclusive sample
– preserve NLO accuracy for jet observables
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Basic idea

Concepts continued from ME+PS merging at LO
• For each event select jet multiplicity k according to

its inclusive NLO cross section
• Reconstruct branching history and nodal scales t0 . . . tk

• Truncated vetoed parton shower, but with peculiarities (cf. below)

Differences for NLO merging
• For each event select type (S or H) according to absolute XS
⇒ Shower then runs differently

• S event:

1 Generate MC@NLO emission at tk+1

2 Truncated “NLO-vetoed” shower between t0 and tk:
First hard emission is only ignored, no event veto

3 Continue with vetoed parton shower

Example: k = 1

t1

t2

• H event:
(Truncated) vetoed parton shower as in tree-level ME+PS
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Master formula

ME+PS@NLO prediction for combining NLO+PS samples of multiplicities n and n + 1

dσ = dΦn B̄(A)
n

[
∆

(A)
n (tc, µ

2
Q) +

µ2
Q∫

tc

dΦ1
D(A)

n

Bn
∆

(A)
n (tn+1, µ

2
Q) Θ(Qcut − Qn+1)

]

+ dΦn+1 H(A)
n ∆

(PS)
n (tn+1, µ

2
Q) Θ(Qcut − Qn+1)

+ dΦn+1 B̄(A)
n+1

(
1 +

Bn+1

B̄(A)
n+1

µ2
Q∫

tn+1

dΦ1 Kn

)
︸ ︷︷ ︸

MC counterterm → NLO-vetoed shower

∆
(PS)
n (tn+1, µ

2
Q) Θ(Qn+1 − Qcut)

×
[

∆
(A)
n+1(tc, tn+1) +

tn+1∫
tc

dΦ1
D(A)

n+1

Bn+1
∆

(A)
n+1(tn+2, tn+1)

]

+ dΦn+2 H(A)
n+1 ∆

(PS)
n+1(tn+2, tn+1) ∆

(PS)
n (tn+1, µ

2
Q) Θ(Qn+1 − Qcut) + . . .
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Visualisation

Example: pp → h+jets

pp → h + jets
Leading Order (LO)
LO+PS
NLO+PS
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pp → h + jets
pp → h + 0j @ NLO

0 50 100 150 200 250 300
10−4

10−3

10−2

10−1

1

p⊥(h) [GeV]

d
σ

/d
p ⊥

[p
b/

G
eV

]

25/30



Visualisation

Example: pp → h+jets

pp → h + jets
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Visualisation

Example: pp → h+jets
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Visualisation

Example: pp → h+jets
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Visualisation

Example: pp → h+jets

pp → h + jets
Leading Order (LO)
LO+PS
NLO+PS
ME+PS@NLO
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Results for W + jets: Jet multiplicities and p⊥

Höche, Krauss, Schönherr, FS (2012)
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• Significant reduction of ME+PS@NLO scale
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• Improved agreement with data
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Results for W + jets: Angular correlations
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• Pure MC@NLO simulation misses correlations between the two leading jets
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Results for t̄t + 0,1,2 jets @ NLO

Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, FS (2014)
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• Uncertainty reduction from 80% to 25% in 2-jet bin
• Important BSM search selection: high total transverse energy
→major reduction of theoretical uncertainties compared to tree-level merging
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Conclusions

NLO+PS matching
• Parton shower on top of NLO

prediction (e.g. inclusive W
production)

• Objectives: X
– avoid double counting in real

emission
– preserve inclusive NLO

accuracy

ME+PS@LO merging
• Multiple LO+PS simulations for

processes of different jet multi
(e.g. W, Wj, Wjj, . . . )

• Objectives: X
– combine into one inclusive

sample by making them
exclusive

– preserve resummation
accuracy

⇓ ⇓
Combination: ME+PS@NLO

• Multiple NLO+PS simulations for processes of different jet multiplicity
e.g. W, Wj, Wjj, . . .

• Objectives: XX
– combine into one inclusive sample
– preserve NLO accuracy for jet observables
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Conclusions

• I’m most certainly out of time by now.

• Nachsitzung?
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